Vortex Formation by Merging and Interference of Multiple Trapped Bose-Einstein Condensates


Book Description

An apparatus for producing atomic-gas Bose-Einstein condensates (BECs) of 87-Rb atoms is described. The apparatus produces 87-Rb BECs in a dual-chamber vacuumsystem that incorporates magnetic transport of trapped atoms from the magneto-optical trapping cell to the BEC production cell via the operation of a series of overlapping magnet coils. The design, construction, and operation of the apparatus are described in detail. The apparatus is used to study the creation of quantized vortices in BECs by the merging and interference of multiple trapped condensates. In this experiment, a single harmonic potential well is partitioned into three sections by an optical barrier, enabling the simultaneous formation of three independent, uncorrelated BECs. The BECs may either merge together during their growth, or, for high-energy barriers, the BECs can be merged together by barrier removal after their formation. Either process may instigate vortex formation in the resulting BEC, depending on the initially indeterminate relative phases of the condensates and the merging rate.




Quantised Vortices


Book Description

Vortices comprising swirling motion of matter are observable in classical systems at all scales ranging from atomic size to the scale of galaxies. In quantum mechanical systems, such vortices are robust entities whose behaviours are governed by the strict rules of topology. The physics of quantum vortices is pivotal to basic science of quantum turbulence and high temperature superconductors, and underpins emerging quantum technologies including topological quantum computation. This handbook is aimed at providing a dictionary style portal to the fascinating quantum world of vortices.




Novel Superfluids


Book Description

This book reports on the latest developments in the field of Superfluidity. The phenomenon has had a tremendous impact on the fundamental sciences as well as a host of technologies. It began with the discovery of superconductivity in mercury in 1911, which was ultimately described theoretically by the theory of Bardeen Cooper and Schriever (BCS) in 1957. The analogous phenomena, superfluidity, was discovered in helium in 1938 and tentatively explained shortly thereafter as arising from a Bose-Einstein Condensation (BEC) by London. But the importance of superfluidity, and the range of systems in which it occurs, has grown enormously. In addition to metals and the helium liquids the phenomena has now been observed for photons in cavities, excitons in semiconductors, magnons in certain materials, and cold gasses trapped in high vacuum. It very likely exist for neutrons in a neutron star and, possibly, in a conjectured quark state at their center. Even the Universe itself can be regarded as being in a kind of superfluid state. All these topics are discussed by experts in the respective subfields.




Vortices in Bose-Einstein Condensates


Book Description

This book provides an up-to-date approach to the diagnosis and management of endocarditis based on a critical analysis of the recent studies. It is the only up-to-date clinically oriented textbook available on this subject. The book is structured in a format that is easy to follow, clinically relevant and evidence based. The author has a special interest in the application of ultrasound in the study of cardiac structure and function.




Applied Research of Quantum Information Based on Linear Optics


Book Description

This thesis reports on outstanding work in two main subfields of quantum information science: one involves the quantum measurement problem, and the other concerns quantum simulation. The thesis proposes using a polarization-based displaced Sagnac-type interferometer to achieve partial collapse measurement and its reversal, and presents the first experimental verification of the nonlocality of the partial collapse measurement and its reversal. All of the experiments are carried out in the linear optical system, one of the earliest experimental systems to employ quantum communication and quantum information processing. The thesis argues that quantum measurement can yield quantum entanglement recovery, which is demonstrated by using the frequency freedom to simulate the environment. Based on the weak measurement theory, the author proposes that white light can be used to precisely estimate phase, and effectively demonstrates that the imaginary part of the weak value can be introduced by means of weak measurement evolution. Lastly, a nine-order polarization-based displaced Sagnac-type interferometer employing bulk optics is constructed to perform quantum simulation of the Landau-Zener evolution, and by tuning the system Hamiltonian, the first experiment to research the Kibble-Zurek mechanism in non-equilibrium kinetics processes is carried out in the linear optical system.







Spontaneous Formation of Quantized Vortices in Bose-Einstein Condensates


Book Description

Phase transitions abound in the physical world, from the subatomic length scales of quark condensation to the decoupling forces in the early universe. In the Bose-Einstein condensation phase transition, a gas of trapped bosonic atoms is cooled to a critical temperature. Below this temperature, a macroscopic number of atoms suddenly starts to occupy a single quantum state; these atoms comprise the Bose-Einstein condensate (BEC). The dynamics of the BEC phase transition are the focus of this dissertation and the experiments described here have provided new information on the details of BEC formation. New theoretical developments are proving to be valuable tools for describing BEC phase transition dynamics and interpreting new experimental results. With their amenability to optical manipulation and probing along with the advent of new microscopic theories, BECs provide an important new avenue for gaining insight into the universal dynamics of phase transitions in general. Spontaneous symmetry breaking in the system's order parameter may be one result of cooling through a phase transition. A potential consequence of this is the spontaneous formation of topological defects, which in a BEC appear as vortices. We experimentally observed and characterized the spontaneous formation of vortices during BEC growth. We attribute vortex creation tocoherence length limitations during the initial stages of the phase transition. Parallel to these experimental observations, theory collaborators have used the Stochastic Gross-Pitaevski Equation formalism to simulate the growth of a condensate from a thermal cloud. The experimental and theoretical statistical results of the spontaneous formation of vortex cores during the growth of the condensate are in good quantitative agreement with one another, supporting our understanding of the dynamics of the phase transition. We believe that our results are also qualitatively consistent with the Kibble-Zurek mechanism, a universal model for topological defect formation. Ultimately, our understanding of the dynamics of the BEC phase transition may lead to a broader understanding of phase transitions in general, and provide new insight into the development of coherence in numerous systems.







Emergent Nonlinear Phenomena in Bose-Einstein Condensates


Book Description

This book, written by experts in the fields of atomic physics and nonlinear science, covers the important developments in a special aspect of Bose-Einstein condensation, namely nonlinear phenomena in condensates. Topics covered include bright, dark, gap and multidimensional solitons; vortices; vortex lattices; optical lattices; multicomponent condensates; mathematical methods/rigorous results; and the beyond-the-mean-field approach.




Bose–Einstein Condensation in Dilute Gases


Book Description

Since an atomic Bose-Einstein condensate, predicted by Einstein in 1925, was first produced in the laboratory in 1995, the study of ultracold Bose and Fermi gases has become one of the most active areas in contemporary physics. This book explains phenomena in ultracold gases from basic principles, without assuming a detailed knowledge of atomic, condensed matter, and nuclear physics. This new edition has been revised and updated, and includes new chapters on optical lattices, low dimensions, and strongly-interacting Fermi systems. This book provides a unified introduction to the physics of ultracold atomic Bose and Fermi gases for advanced undergraduate and graduate students, as well as experimentalists and theorists. Chapters cover the statistical physics of trapped gases, atomic properties, cooling and trapping atoms, interatomic interactions, structure of trapped condensates, collective modes, rotating condensates, superfluidity, interference phenomena, and trapped Fermi gases. Problems are included at the end of each chapter.