Vortex Dynamics


Book Description

Vortex dynamics is a natural paradigm for the field of chaotic motion and modern dynamical system theory. However, this volume focuses on those aspects of fluid motion that are primarily controlled by the vorticity and are such that the effects of the other fluid properties are secondary.




Vortex Structure and Dynamics


Book Description

The object of this book is to present the state of the art and to summarize the most recent advances in the structure and dynamics of vortices. This subject has indeed recently made some remarkable progress, particularly thanks to stu- dies of turbulence, where coherent structures have been shown to play an important role. The book presents four ge- neral reviews on the experimental, numerical, theoretical, and 2D-vortex aspects. In addition to these reviews, a se- ries of articles describe a cross-section of recent work. Some of these studies are concerned with related fields, such as turbulence, aerodynamics, wakes, geophysics, mixing, and particle dynamics.




Vorticity and Vortex Dynamics


Book Description

This book is a comprehensive and intensive monograph for scientists, engineers and applied mathematicians, as well as graduate students in fluid dynamics. It starts with a brief review of fundamentals of fluid dynamics, with an innovative emphasis on the intrinsic orthogonal decomposition of fluid dynamic process, by which one naturally identifies the content and scope of vorticity and vortex dynamics. This is followed by a detailed presentation of vorticity dynamics as the basis of later development. In vortex dynamics part the book deals with the formation, motion, interaction, stability, and breakdown of various vortices. Typical vortex structures are analyzed in laminar, transitional, and turbulent flows, including stratified and rotational fluids. Physical understanding of vertical flow phenomena and mechanisms is the first priority throughout the book. To make the book self-contained, some mathematical background is briefly presented in the main text, but major prerequisites are systematically given in appendices. Material usually not seen in books on vortex dynamics is included, such as geophysical vortex dynamics, aerodynamic vortical flow diagnostics and management.







Turbulence Structure and Vortex Dynamics


Book Description

Edited volume on turbulence, first published in 2000.




Dynamics of Vortex Structures in a Stratified Rotating Fluid


Book Description

This book presents an extensive analysis of the dynamics of discrete and distributed baroclinic vortices in a multi-layer fluid that characterizes the main features of the large and mesoscales dynamics of the atmosphere and the ocean. It widely covers the case of hetonic situations as well as the case of intrathermocline vortices that are familiar in oceanographic and of recognized importance for heat and mass transfers. Extensive typology of such baroclinic eddies is made and analysed with the help of theoretical development and numerical computations. As a whole it gives an overview and synthesis of all the many situations that can be encountered based on the long history of the theory of vortex motion and on many new situations. It gives a renewed insight on the extraordinary richness of vortex dynamics and open the way for new theoretical, observational and experimental advances. This volume is of interest to experts in physical oceanography, meteorology, hydrodynamics, dynamic systems, involved in theoretical, experimental and applied research and lecturers, post-graduate students, and students in these fields.







Vortex Dynamics and Vortex Methods


Book Description

Understanding vortex dynamics is the key to understanding much of fluid dynamics. For this reason, many researchers, using a great variety of different approaches--analytical, computational, and experimental--have studied the dynamics of vorticity. The AMS-SIAM Summer Seminar on Vortex Dynamics and Vortex Methods, held in June 1990 at the University of Washington in Seattle, brought together experts with a broad range of viewpoints and areas of specialization. This volume contains the proceedings from that seminar. The focus here is on the numerical computation of high Reynolds number incompressible flows. Also included is a smaller selection of important experimental results and analytic treatments. Many of the articles contain valuable introductory and survey material as well as open problems. Readers will appreciate this volume for its coverage of a wide variety of numerical, analytical, and experimental tools and for its treatment of interesting important discoveries made with these tools.




Theoretical Approaches to Turbulence


Book Description

Turbulence is the lIDst natural nDde of fluid lIDtion, and has been the subject of scientific study for all Dst a century. During this period, various ideas and techniques have evolved to nDdel turbulence. Following Saffman, these theoretical approaches can be broadly divided into four overlapping categories -- (1) analytical lIDdelling, (2) physical lIDdelling, (3) phenomenologicalllDdelling, and (4) nurerical lIDdelling. With the purpose of stmtnarizing our =ent understanding of these theoretical approaches to turbulence, recognized leaders (fluid dynamicists, mathematicians and physicists) in the field were invited to participate in a formal workshop during October 10-12, 1984, sponsored by The Institute for CooIputer Applications in Science and Engineering and NASA Langley Research Center. Kraiciman, McCcxnb, Pouquet and Spiegel represented the category of analytical nDdelling, while Landahl and Saffman represented physical lIDdelling. The contributions of Latmder and Spalding were in the category of phenanenological lIDdelling, and those of Ferziger and Reynolds in the area of nurericalllDdelling. Aref, Cholet, Lumley, Moin, Pope and Temam served on the panel discussions. With the care and cooperation of the participants, the workshop achieved its purpose, and we believe that its proceedings published in this vol\. llre has lasting scientific value. The tone of the workshop was set by two introductory talks by Bushnell and ChaImm. Buslmell presented the engineering viewpoint while Chapman reviewed from a historical perspective developments in the study of turbulence. The remaining talks dealt with specific aspects of the theoretical approaches to fluid turbulence.




Vortex Structures in Fluid Dynamic Problems


Book Description

The contents of the book cover topics on vortex dynamics in a variety of flow problems and describe observational measurements and their interpretation. The book contains 13 chapters that first include vortices in the earth and planetary sciences related to vortices in the Venus plasma wake and also on tropical cyclones and on rotating shallow water in the earth's atmosphere. Vortices in fluid problems include airplane wake vortices, vorticity evolution in free-shear flows, together with axisymmetric flows with swirl, as well as thermal conductivities in fluid layers. Vortices in relativistic fluids, in magnetic disks, solitons and vortices, and relaxation for point vortices were also examined. Other chapters describe conditions in a vortex bioreactor and in vortex yarn structures.