Walsh Series, An Introduction to Dyadic Harmonic Analysis


Book Description

This book provides a broadly based, theoretical monograph on the Walsh System, a system that is the simplest non-trivial model for harmonic analysis and shares many properties with the trigonometric system. It gives a thorough introduction to foundations of Walsh-Fourier analysis introducing the main techniques and fundamental problems in a way that makes the literature accessible. It also shows how the theory of Walsh-Fourier analysis relates to other aspects of harmonic analysis. The book will be of interest to postgraduate students in pure and applied mathematics, and those studying numerical analysis and computational mathematics.




Walsh Series


Book Description




Dyadic Walsh Analysis from 1924 Onwards Walsh-Gibbs-Butzer Dyadic Differentiation in Science Volume 1 Foundations


Book Description

Dyadic (Walsh) analysis emerged as a new research area in applied mathematics and engineering in early seventies within attempts to provide answers to demands from practice related to application of spectral analysis of different classes of signals, including audio, video, sonar, and radar signals. In the meantime, it evolved in a mature mathematical discipline with fundamental results and important features providing basis for various applications. The book will provide fundamentals of the area through reprinting carefully selected earlier publications followed by overview of recent results concerning particular subjects in the area written by experts, most of them being founders of the field, and some of their followers. In this way, this first volume of the two volume book offers a rather complete coverage of the development of dyadic Walsh analysis, and provides a deep insight into its mathematical foundations necessary for consideration of generalizations and applications that are the subject of the second volume. The presented theory is quite sufficient to be a basis for further research in the subject area as well as to be applied in solving certain new problems or improving existing solutions for tasks in the areas which motivated development of the dyadic analysis.




Dyadic Walsh Analysis from 1924 Onwards Walsh-Gibbs-Butzer Dyadic Differentiation in Science Volume 2 Extensions and Generalizations


Book Description

The second volume of the two volumes book is dedicated to various extensions and generalizations of Dyadic (Walsh) analysis and related applications. Considered are dyadic derivatives on Vilenkin groups and various other Abelian and finite non-Abelian groups. Since some important results were developed in former Soviet Union and China, we provide overviews of former work in these countries. Further, we present translations of three papers that were initially published in Chinese. The presentation continues with chapters written by experts in the area presenting discussions of applications of these results in specific tasks in the area of signal processing and system theory. Efficient computing of related differential operators on contemporary hardware, including graphics processing units, is also considered, which makes the methods and techniques of dyadic analysis and generalizations computationally feasible. The volume 2 of the book ends with a chapter presenting open problems pointed out by several experts in the area.




Walsh Series and Transforms


Book Description

'Et moi ..., si j'avait su comment en revenir, One service mathematics has rendered the je n'y se.rais point aile.' human race. It has put common sense back Jules Verne where it belongs, on!be topmost shelf next to the dusty canister labelled 'disc:arded non sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.




Harmonic Analysis and Nonlinear Differential Equations


Book Description

There are also several survey articles on recent developments in multiple trigonometric series, dyadic harmonic analysis, special functions, analysis on fractals, and shock waves, as well as papers with new results in nonlinear differential equations. These survey articles, along with several of the research articles, cover a wide variety of applications such as turbulence, general relativity and black holes, neural networks, and diffusion and wave propagation in porous media.




Harmonic Analysis And Fractal Analysis Over Local Fields And Applications


Book Description

This book is a monograph on harmonic analysis and fractal analysis over local fields. It can also be used as lecture notes/textbook or as recommended reading for courses on modern harmonic and fractal analysis. It is as reliable as Fourier Analysis on Local Fields published in 1975 which is regarded as the first monograph in this research field.The book is self-contained, with wide scope and deep knowledge, taking modern mathematics (such as modern algebra, point set topology, functional analysis, distribution theory, and so on) as bases. Specially, fractal analysis is studied in the viewpoint of local fields, and fractal calculus is established by pseudo-differential operators over local fields. A frame of fractal PDE is constructed based on fractal calculus instead of classical calculus. On the other hand, the author does his best to make those difficult concepts accessible to readers, illustrate clear comparison between harmonic analysis on Euclidean spaces and that on local fields, and at the same time provide motivations underlying the new concepts and techniques. Overall, it is a high quality, up to date and valuable book for interested readers.




Functional Analysis


Book Description

This is the fourth and final volume in the Princeton Lectures in Analysis, a series of textbooks that aim to present, in an integrated manner, the core areas of analysis. Beginning with the basic facts of functional analysis, this volume looks at Banach spaces, Lp spaces, and distribution theory, and highlights their roles in harmonic analysis. The authors then use the Baire category theorem to illustrate several points, including the existence of Besicovitch sets. The second half of the book introduces readers to other central topics in analysis, such as probability theory and Brownian motion, which culminates in the solution of Dirichlet's problem. The concluding chapters explore several complex variables and oscillatory integrals in Fourier analysis, and illustrate applications to such diverse areas as nonlinear dispersion equations and the problem of counting lattice points. Throughout the book, the authors focus on key results in each area and stress the organic unity of the subject. A comprehensive and authoritative text that treats some of the main topics of modern analysis A look at basic functional analysis and its applications in harmonic analysis, probability theory, and several complex variables Key results in each area discussed in relation to other areas of mathematics Highlights the organic unity of large areas of analysis traditionally split into subfields Interesting exercises and problems illustrate ideas Clear proofs provided




Encyclopaedia of Mathematics


Book Description

This is the first Supplementary volume to Kluwer's highly acclaimed Encyclopaedia of Mathematics. This additional volume contains nearly 600 new entries written by experts and covers developments and topics not included in the already published 10-volume set. These entries have been arranged alphabetically throughout. A detailed index is included in the book. This Supplementary volume enhances the existing 10-volume set. Together, these eleven volumes represent the most authoritative, comprehensive up-to-date Encyclopaedia of Mathematics available.




Approximation Theory


Book Description

We study in Part I of this monograph the computational aspect of almost all moduli of continuity over wide classes of functions exploiting some of their convexity properties. To our knowledge it is the first time the entire calculus of moduli of smoothness has been included in a book. We then present numerous applications of Approximation Theory, giving exact val ues of errors in explicit forms. The K-functional method is systematically avoided since it produces nonexplicit constants. All other related books so far have allocated very little space to the computational aspect of moduli of smoothness. In Part II, we study/examine the Global Smoothness Preservation Prop erty (GSPP) for almost all known linear approximation operators of ap proximation theory including: trigonometric operators and algebraic in terpolation operators of Lagrange, Hermite-Fejer and Shepard type, also operators of stochastic type, convolution type, wavelet type integral opera tors and singular integral operators, etc. We present also a sufficient general theory for GSPP to hold true. We provide a great variety of applications of GSPP to Approximation Theory and many other fields of mathemat ics such as Functional analysis, and outside of mathematics, fields such as computer-aided geometric design (CAGD). Most of the time GSPP meth ods are optimal. Various moduli of smoothness are intensively involved in Part II. Therefore, methods from Part I can be used to calculate exactly the error of global smoothness preservation. It is the first time in the literature that a book has studied GSPP.