Wandering Vectors for Unitary Systems and Orthogonal Wavelets


Book Description

Investigates topological and structural properties of the set W(U) of all complete wandering vectors for a system U of unitary operators acting on a Hilbert space. The authors parameterize W(U) in terms of a fixed vector y and the set of all unitary operators which locally commute with U at y. No index. Annotation copyrighted by Book News, Inc., Portland, OR




Wavelets and Multiscale Analysis


Book Description

Since its emergence as an important research area in the early 1980s, the topic of wavelets has undergone tremendous development on both theoretical and applied fronts. Myriad research and survey papers and monographs have been published on the subject, documenting different areas of applications such as sound and image processing, denoising, data compression, tomography, and medical imaging. The study of wavelets remains a very active field of research, and many of its central techniques and ideas have evolved into new and promising research areas. This volume, a collection of invited contributions developed from talks at an international conference on wavelets, is divided into three parts: Part I is devoted to the mathematical theory of wavelets and features several papers on wavelet sets and the construction of wavelet bases in different settings. Part II looks at the use of multiscale harmonic analysis for understanding the geometry of large data sets and extracting information from them. Part III focuses on applications of wavelet theory to the study of several real-world problems. Overall, the book is an excellent reference for graduate students, researchers, and practitioners in theoretical and applied mathematics, or in engineering.




Operator Theory, Operator Algebras and Their Interactions with Geometry and Topology


Book Description

This book is the proceeding of the International Workshop on Operator Theory and Applications (IWOTA) held in July 2018 in Shanghai, China. It consists of original papers, surveys and expository articles in the broad areas of operator theory, operator algebras and noncommutative topology. Its goal is to give graduate students and researchers a relatively comprehensive overview of the current status of research in the relevant fields. The book is also a special volume dedicated to the memory of Ronald G. Douglas who passed away on February 27, 2018 at the age of 79. Many of the contributors are Douglas’ students and past collaborators. Their articles attest and commemorate his life-long contribution and influence to these fields.







Gabor And Wavelet Frames


Book Description

Gabor and wavelet analyses have found widespread applications in signal analysis, image processing and many other information-related areas. Both deliver representations that are simultaneously local in time and in frequency. Due to their significance and success in practical applications, they formed some of the core topics of the program “Mathematics and Computation in Imaging Science and Information Processing”, which was held at the Institute for Mathematical Sciences, National University of Singapore, from July to December 2003 and in August 2004. As part of the program, tutorial lectures were conducted by international experts, and they covered a wide spectrum of topics in mathematical image, signal and information processing.This volume includes exposition articles by the tutorial speakers on the foundations of Gabor analysis, subband filters and wavelet algorithms, and operator-theoretic interpolation of wavelets and frames. It also presents research papers on Gabor analysis, written by specialists in their respective areas. The volume takes graduate students and researchers new to the field on a valuable learning journey from introductory Gabor and wavelet analyses to advanced topics of current research.




Representations, Wavelets, and Frames


Book Description

The work of Lawrence Baggett has had a profound impact on the field of abstract harmonic analysis and the many areas of mathematics that use its techniques. His sphere of influence ranges from purely theoretical results regarding the representations of locally compact groups to recent applications of wavelets and frames to problems in sampling theory and image compression. Contributions in this volume reflect this broad scope, and Baggett’s unusual ability to bring together techniques from disparate fields. Recent applications to problems in sampling theory and image compression are included.




The Functional and Harmonic Analysis of Wavelets and Frames


Book Description

Over the past decade, wavelets and frames have emerged as increasingly powerful tools of analysis on $n$-dimension Euclidean space. Both wavelets and frames were studied initially by using classical Fourier analysis. However, in recent years more abstract tools have been introduced, for example, from operator theory, abstract harmonic analysis, von Neumann algebras, etc. The editors of this volume organized a Special Session on the functional and harmonic analysis of wavelets at the San Antonio (TX) Joint Mathematics Meetings. The goal of the session was to focus research attention on these newly-introduced tools and to share the organizers' view that this modern application holds the promise of providing some deeper understanding and fascinating new structures in pure functional analysis. This volume presents the fruitful results of the lively discussions that took place at the conference




Operator Theory, Operator Algebras, and Applications


Book Description

This book offers a presentation of some new trends in operator theory and operator algebras, with a view to their applications. It consists of separate papers written by some of the leading practitioners in the field. The content is put together by the three editors in a way that should help students and working mathematicians in other parts of the mathematical sciences gain insight into an important part of modern mathematics and its applications. While different specialist authors are outlining new results in this book, the presentations have been made user friendly with the aid of tutorial material. In fact, each paper contains three things: a friendly introduction with motivation, tutorial material, and new research. The authors have strived to make their results relevant to the rest of mathematics. A list of topics discussed in the book includes wavelets, frames and their applications, quantum dynamics, multivariable operator theory, $C*$-algebras, and von Neumann algebras. Some longer papers present recent advances on particular, long-standing problems such as extensions and dilations, the Kadison-Singer conjecture, and diagonals of self-adjoint operators.







Fractal Functions, Fractal Surfaces, and Wavelets


Book Description

Fractal Functions, Fractal Surfaces, and Wavelets, Second Edition, is the first systematic exposition of the theory of local iterated function systems, local fractal functions and fractal surfaces, and their connections to wavelets and wavelet sets. The book is based on Massopust's work on and contributions to the theory of fractal interpolation, and the author uses a number of tools—including analysis, topology, algebra, and probability theory—to introduce readers to this exciting subject. Though much of the material presented in this book is relatively current (developed in the past decades by the author and his colleagues) and fairly specialized, an informative background is provided for those entering the field. With its coherent and comprehensive presentation of the theory of univariate and multivariate fractal interpolation, this book will appeal to mathematicians as well as to applied scientists in the fields of physics, engineering, biomathematics, and computer science. In this second edition, Massopust includes pertinent application examples, further discusses local IFS and new fractal interpolation or fractal data, further develops the connections to wavelets and wavelet sets, and deepens and extends the pedagogical content. - Offers a comprehensive presentation of fractal functions and fractal surfaces - Includes latest developments in fractal interpolation - Connects fractal geometry with wavelet theory - Includes pertinent application examples, further discusses local IFS and new fractal interpolation or fractal data, and further develops the connections to wavelets and wavelet sets - Deepens and extends the pedagogical content