Waste and Byproducts in Cement-Based Materials


Book Description

Waste and By-Products in Cement-Based Materials: Innovative Sustainable Materials for a Circular Economy covers various recycled materials, by-products and wastes that are suitable for the manufacture of materials within the spectrum of so-called cement-based materials (CBM). Sections cover wastes for replacement of aggregates in CBM, focus on the application of wastes for the replacement of clinker and mineral additions in the manufacture of binders, discuss the optimization process surrounding the manufacture of recycled concrete and mortars, multi-recycling, advanced radiological studies, optimization of self-compacting concrete, rheology properties, corrosion prevention, and more. Final sections includes a review of real-scale applications that have been made in recent years of cement-based materials in roads, railway superstructures, buildings and civil works, among others, as well as a proposal of new regulations to promote the use of waste in the manufacture of CBM. - Favors the institution of the circular economy in the construction industry by eliminating the barriers that currently prevent industrial waste from being valorized by its inclusion in CBM design - Features an in-depth exploration of the strengths and weaknesses of new raw materials and their application to CBMs - Features real-scale applications that have been made in recent years of cement-based materials in roads, railway superstructures, buildings and civil works, among others - Presents current, state-of-the-art, and future-prospects for the use of industrial waste in CBMs




Waste Materials and By-Products in Concrete


Book Description

The amount and variety of waste that humanity dumps in landfill sites is nothing short of a scandal, believes Rafat Siddique, of Deemed University in Patiala, India. Instead, we ought to be building new homes out of it! Siddique shows in this important book that many non-hazardous waste materials and by-products which are landfilled, can in fact be used in making concrete and similar construction materials.




Cement-Based Materials for Nuclear Waste Storage


Book Description

As the re-emergence of nuclear power as an acceptable energy source on an international basis continues, the need for safe and reliable ways to dispose of radioactive waste becomes ever more critical. The ultimate goal for designing a predisposal waste-management system depends on producing waste containers suitable for storage, transportation and permanent disposal. Cement-Based Materials for Nuclear-Waste Storage provides a roadmap for the use of cementation as an applied technique for the treatment of low- and intermediate-level radioactive wastes. Coverage includes, but is not limited to, a comparison of cementation with other solidification techniques, advantages of calcium-silicate cements over other materials and a discussion of the long-term suitability and safety of waste packages as well as cement barriers.




Waste Materials Used in Concrete Manufacturing


Book Description

The environmental aspects involved in the production and use of cement, concrete and other building materials are of growing importance. CO2 emissions are 0.8-1.3 ton/ton of cement production in dry process. SO2 emission is also very high, but is dependent upon the type of fuel used. Energy consumption is also very high at 100-150 KWT/ton of cement produced. It is costly to erect new cement plants. Substitution of waste materials will conserve dwindling resources, and will avoid the environmental and ecological damages caused by quarrying and exploitation of the raw materials for making cement. To some extent, it will help to solve the problem otherwise encountered in disposing of the wastes. Partial replacement of clinker or portland cement by slag, fly ash, silica fume and natural rock minerals illustrates these aspects. Partial replacement by natural materials that require little or no processing, such as pozzolans, calcined clays, etc., saves energy and decreases emission of gases. The output of waste materials suitable as cement replacement (slags, fly ashes, silica fumes, rice husk ash, etc.) is more than double that of cement production.These waste materials can partly be used, or processed, to produce materials suitable as aggregates or fillers in concrete. These can also be used as clinker raw materials, or processed into cementing systems. New grinding and mixing technology will make the use of these secondary materials simpler. Developments in chemical admixtures: superplasticizers, air entraining agents, etc., help in controlling production techniques and, in achieving the desired properties in concrete.Use of waste products is not only a partial solution to environmental and ecological problems; it significantly improves the microstructure, and consequently the durability properties of concrete, which are difficult to achieve by the use of pure portland cement. The aim is not only to make the cements and concrete less expensive, but to provide a blend of tailored properties of waste materials and portland cements suitable for specified purpose. This requires a better understanding of chemistry, and materials science.There is an increasing demand for better understanding of material properties, as well as better control of the microstructure developing in the construction material, to increase durability. The combination of different binders and modifiers to produce cheaper and more durable building materials will solve to some extent the ecological and environmental problems.




Cementitious Materials for Nuclear Waste Immobilization


Book Description

Cementitious materials are an essential part in any radioactive waste disposal facility. Conditioning processes such as cementation are used to convert waste into a stable solid form that is insoluble and will prevent dispersion to the surrounding environment. It is incredibly important to understand the long-term behavior of these materials. This book summarises approaches and current practices in use of cementitious materials for nuclear waste immobilisation. It gives a unique description of the most important aspects of cements as nuclear waste forms: starting with a description of wastes, analyzing the cementitious systems used for immobilization and describing the technologies used, and ending with analysis of cementitious waste forms and their long term behavior in an envisaged disposal environment. Extensive research has been devoted to study the feasibility of using cement or cement based materials in immobilizing and solidifying different radioactive wastes. However, these research results are scattered. This work provides the reader with both the science and technology of the immobilization process, and the cementitious materials used to immobilize nuclear waste. It summarizes current knowledge in the field, and highlights important areas that need more investigation. The chapters include: Introduction, Portland cement, Alternative cements, Cement characterization and testing, Radioactive waste cementation, Waste cementation technology, Cementitious wasteform durability and performance assessment.




Sustainable Waste Utilization in Bricks, Concrete, and Cementitious Materials


Book Description

This book highlights the current research, conceptual and practical utilization of waste in building materials. It examines the production of industrial and agricultural wastes that have been generated worldwide and have significant environmental impact. The book discusses how to incorporate these wastes effectively with greener technology and how to address its environmental impact in order to produce environmentally friendly and sustainable green products. This book also will capitalize on its practical application, properties, performance and economic advantages. The topics covered include the physical, mechanical and environmental properties, leaching behaviour, gas emissions and performance of sustainable construction materials. This book offers a valuable reference for researchers, industries and interested stakeholders in sustainable construction or any allied fields.




Waste and Supplementary Cementitious Materials in Concrete


Book Description

Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications provides a state-of-the-art review of the effective and efficient use of these materials in construction. Chapters focus on a specific type of material, addressing their characterization, strength, durability and structural applications. Sections include discussions of the properties of materials, including their physical, chemical and characterization, their strength and durability, modern engineering applications, case studies, the state of codes and standards of implementation, cost considerations, and the role of materials in green and sustainable construction. The book concludes with a discussion of research needs. - Focuses on material properties and applications (as well as 'sustainability' aspects) of cementitious materials - Assembles leading researchers from diverse areas of study - Ideas for use as a 'one stop' reference for advanced postgraduate courses focusing on sustainable construction materials




Supplementary Cementing Materials


Book Description

This book is an attempt to consolidate the published research related to the use of Supplementary Cementing Materials in cement and concrete. It comprises of five chapters. Each chapter is devoted to a particular supplementing cementing material. It is based on the literature/research findings published in journals/conference proceeding, etc. Topics covered in the book are; coal fly ash, silica fume (SF), granulated blast furnace slag (GGBS), metakaolin (MK), and rice husk ash (RHA). Each chapter contains introduction, properties of the waste material/by-product, its potential usage, and its effect on the properties of fresh and hardened concrete and other cement based materials.




Biochar for Environmental Management


Book Description

"Biochar is the carbon-rich product when biomass (such as wood, manure, or crop residues) is heated in a closed container with little or no available air. It can be used to improve agriculture and the environment in several ways, and its stability in soil and superior nutrient-retention properties make it an ideal soil amendment to increase crop yields. In addition to this, biochar sequestration, in combination with sustainable biomass production, can be carbon-negative and therefore used to actively remove carbon dioxide from the atmosphere, with major implications for mitigation of climate change. Biochar production can also be combined with bioenergy production through the use of the gases that are given off in the pyrolysis process.This book is the first to synthesize the expanding research literature on this topic. The book's interdisciplinary approach, which covers engineering, environmental sciences, agricultural sciences, economics and policy, is a vital tool at this stage of biochar technology development. This comprehensive overview of current knowledge will be of interest to advanced students, researchers and professionals in a wide range of disciplines"--Provided by publisher.




Cement Based Materials


Book Description

Cement-based materials have been used by humans nearly since the dawn of civilization. The Egyptians used lime and gypsum cement to bind their aggregate materials, mud and straw, resulting in bricks that are used for building their famous Egyptian pyramids (between 3000 and 2500 BC). Hydrated cement is a cement material bonded together with water and used for building construction; it is characterized by acceptable chemical, physical, thermal, mechanical, and structural stability. It plays a main role in the creation of vessels for storage, roads to travel on, weather-resistant structure for protection, inert hard stabilizer for hazardous wastes, and so on. Due to the composition of these materials and their advantages, it has been practiced in different applications. Cement is an essential component of making concrete, the single most prevalent building material used worldwide for construction, skyscrapers, highways, tunnels, bridges, hydraulic dams, and railway ties. Besides their numerous desired properties, there are some undesirable features. To overcome these disadvantages, several studies were established to prepare, improve, and evaluate innovative cement-based materials. Despite its oldness and deep research, every year several methods and materials evolve and so do cement technology. This book intends to provide a comprehensive overview on recent advances in the evaluation of these materials.