Waste Heat Recovery in Process Industries


Book Description

Explore modern waste heat recovery technology across a variety of industries In Waste Heat Recovery in Process Industries, esteemed thermal engineer Hussam Jouhara delivers an organized and comprehensive exploration of waste heat recovery systems with a focus on industrial applications in different temperature ranges. The author describes various waste heat recovery systems, like heat exchangers, waste heat boilers, air preheaters, direct electrical conversion devices, and thermal storage. The book also offers discussions of the technologies and applications relevant to different temperature ranges present in industrial settings along with revealing case studies from various industries. Waste Heat Recovery in Process Industries examines a variety of industries, from steel to ceramics, chemicals, and food, and how plants operating in these sectors can use waste heat to improve their energy efficiency, reduce energy costs, and minimize their carbon footprint. The book also offers: A thorough introduction to waste heat recovery systems, including recuperative and regenerative burners, heat exchangers, waste heat boilers, air preheaters, and heat pumps Comprehensive explorations of low temperature applications, below 100°C, including advantages and drawbacks, as well as illustrative case studies Practical discussions of medium temperature applications, between 100°C and 400°C, including case studies In-depth examination of high temperature applications, above 400°C, including several case studies Perfect for chemical, mechanical, process, and power engineers, Waste Heat Recovery in Process Industries is also an ideal resource for professionals working in the chemical, metal processing, pharmaceutical, and food industries.




Industrial Boilers and Heat Recovery Steam Generators


Book Description

Filled with over 225 boiler/HRSG operation and design problems, this book covers steam generators and related systems used in process plants, refineries, chemical plants, electrical utilities, and other industrial settings. Emphasizing the thermal engineering aspects, the author provides information on the design and performance of steam generators




Design and Development of Efficient Energy Systems


Book Description

There is not a single industry which will not be transformed by machine learning and Internet of Things (IoT). IoT and machine learning have altogether changed the technological scenario by letting the user monitor and control things based on the prediction made by machine learning algorithms. There has been substantial progress in the usage of platforms, technologies and applications that are based on these technologies. These breakthrough technologies affect not just the software perspective of the industry, but they cut across areas like smart cities, smart healthcare, smart retail, smart monitoring, control, and others. Because of these “game changers,” governments, along with top companies around the world, are investing heavily in its research and development. Keeping pace with the latest trends, endless research, and new developments is paramount to innovate systems that are not only user-friendly but also speak to the growing needs and demands of society. This volume is focused on saving energy at different levels of design and automation including the concept of machine learning automation and prediction modeling. It also deals with the design and analysis for IoT-enabled systems including energy saving aspects at different level of operation. The editors and contributors also cover the fundamental concepts of IoT and machine learning, including the latest research, technological developments, and practical applications. Valuable as a learning tool for beginners in this area as well as a daily reference for engineers and scientists working in the area of IoT and machine technology, this is a must-have for any library.







Steam Generators and Waste Heat Boilers


Book Description

Incorporates Worked-Out Real-World Problems Steam Generators and Waste Heat Boilers: For Process and Plant Engineers focuses on the thermal design and performance aspects of steam generators, HRSGs and fire tube, water tube waste heat boilers including air heaters, and condensing economizers. Over 120 real-life problems are fully worked out which will help plant engineers in evaluating new boilers or making modifications to existing boiler components without assistance from boiler suppliers. The book examines recent trends and developments in boiler design and technology and presents novel ideas for improving boiler efficiency and lowering gas pressure drop. It helps plant engineers understand and evaluate the performance of steam generators and waste heat boilers at any load. Learn How to Independently Evaluate the Thermal Performance of Boilers and Their Components This book begins with basic combustion and boiler efficiency calculations. It then moves on to estimation of furnace exit gas temperature (FEGT), furnace duty, view factors, heat flux, and boiler circulation calculations. It also describes trends in large steam generator designs such as multiple-module; elevated drum design types of boilers such as D, O, and A; and forced circulation steam generators. It illustrates various options to improve boiler efficiency and lower operating costs. The author addresses the importance of flue gas analysis, fire tube versus water tube boilers used in chemical plants, and refineries. In addition, he describes cogeneration systems; heat recovery in sulfur plants, hydrogen plants, and cement plants; and the effect of fouling factor on performance. The book also explains HRSG simulation process and illustrates calculations for complete performance evaluation of boilers and their components. Helps plant engineers make independent evaluations of thermal performance of boilers before purchasing them Provides numerous examples on boiler thermal performance calculations that help plant engineers develop programming codes with ease Follows the metric and SI system, and British units are shown in parentheses wherever possible Includes calculation procedures for the basic sizing and performance evaluation of a complete steam generator or waste heat boiler system and their components with appendices outlining simplified procedures for estimation of heat transfer coefficients Steam Generators and Waste Heat Boilers: For Process and Plant Engineers serves as a source book for plant engineers, consultants, and boiler designers.




Integrated Maintenance and Energy Management in the Chemical Industries


Book Description

This book provides guidelines to ensure a safe and smooth running chemical production plant. It presents in detail such important considerations as selection of proper technology with efficient machinery (for a new plant) or expansion / diversification of existing plants for manufacture of more products for safe and pollution-free operation.This book also provides guidelines for improved plant layout, and selection of raw materials to reduce pre-processing costs prior to feeding to process units. The book further examines procuring better inputs (such as catalysts, filter cloths, tower internals etc) required for smooth plant operation and better product quality for client satisfaction, enhanced process control through suitable instrumentation, and preventive maintenance.Typical conflicts arising in production units due to different priorities among sales departments, purchasing departments, production engineers, and maintenance engineers are addressed. The book also suggests methods to reduce the loss of energy during start up and shutdowns, increase equipment life, and prevent environmental pollution.Case studies are included in appropriate chapters.




Energy Analysis of 108 Industrial Processes


Book Description

Here is the most complete reference ever developed for identifying quantity and quality of industrial waste energy which may be economically practical to recover. Based on years of research, the detailed heat and material balances which are presented were developed from process flow diagrams of 108 industrial processes, with technical input from consultants and manufacturers, and extensive on-site verification studies. Data such as process temperature, pressure, fuel requirements, thermal efficiency and radiation, and convection losses are determined for varying industrial operations spanning the food products, textile, lumber and wood, paper, chemical, petroleum, rubber and plastics, glass, metals, machinery, transportation equipment, and instrument manufacturing industries.




Energy Management and Energy Efficiency in Industry


Book Description

This book is presented to demonstrate how energy efficiency can be achieved in existing systems or in the design of a new system, as well as a guide for energy savings opportunities. Accordingly, the content of the book has been enriched with many examples applied in the industry. Thus, it is aimed to provide energy savings by successfully managing the energy in the readers’ own businesses. The authors primarily present the necessary measurement techniques and measurement tools to be used for energy saving, as well as how to evaluate the methods that can be used for improvements in systems. The book also provides information on how to calculate the investments to be made for these necessary improvements and the payback periods. The book covers topics such as: • Reducing unit production costs by ensuring the reduction of energy costs, • Efficient and quality energy use, • Meeting market needs while maintaining competitive conditions, • Ensuring the protection of the environment by reducing CO2 and CO emissions with energy saving and energy efficiency, • Ensuring the correct usage of systems by carrying out energy audits. In summary, this book explains how to effectively design energy systems and manage energy to increase energy savings. In addition, the study has been strengthened by giving some case studies and their results in the fields of intensive energy consumption in industry. This book is an ideal resource for practitioners, engineers, researchers, academics, employees and investors in the fields of energy, energy management, energy efficiency and energy saving.




Sustainable Energy from Salinity Gradients


Book Description

Salinity gradient energy, also known as blue energy and osmotic energy, is the energy obtainable from the difference in salt concentration between two feed solutions, typically sea water and river water. It is a large-scale renewable resource that can be harvested and converted to electricity. Efficient extraction of this energy is not straightforward, however. Sustainable Energy from Salinity Gradients provides a comprehensive review of resources, technologies and applications in this area of fast-growing interest. Key technologies covered include pressure retarded osmosis, reverse electrodialysis and accumulator mixing. Environmental and economic aspects are also considered, together with the possible synergies between desalination and salinity gradient energy technologies. Sustainable Energy from Salinity Gradients is an essential text for R&D professionals in the energy & water industry interested in salinity gradient power and researchers in academia from post-graduate level upwards. For more than ten years the Editors have been sharing substantial research activities in the fields of renewable energy and desalination, successfully participating to a number of European Union research projects and contributing to the relevant scientific literature with more than 100 papers and 2 books on Desalination technologies and their coupling with Renewable Energy. They are intensely working in the field of Salinity Gradient Power, carrying out research with specific focus o.n open-loop and closed-loop reverse electrodialysis and pressure retarded osmosis. - Covers applications of pressure retarded osmosis, reverse electrodialysis, and capacitive mixing for salinity gradient power in one convenient volume - Presents the environmental aspects and economics of salinity gradient energy - Explores possible synergies between desalination and salinity gradient energy




Handbook of Applied Thermal Design


Book Description

Gives a foundation to the four principle facets of thermal design: heat transfer analysis, materials performance, heating and cooling technology, and instrumentation and control. The focus is on providing practical thermal design and development guidance across the spectrum of problem analysis, material applications, equipment specification, and sensor and control selection.