Water Quality


Book Description

This volume is of great importance to humans and other living organisms. The study of water quality draws information from a variety of disciplines including chemistry, biology, mathematics, physics, engineering, and resource management. University training in water quality is often limited to specialized courses in engineering, ecology, and fisheries curricula. This book also offers a basic understanding of water quality to professionals who are not formally trained in the subject. The revised third edition updates and expands the discussion, and incorporates additional figures and illustrative problems. Improvements include a new chapter on basic chemistry, a more comprehensive chapter on hydrology, and an updated chapter on regulations and standards. Because it employs only first-year college-level chemistry and very basic physics, the book is well-suited as the foundation for a general introductory course in water quality. It is equally useful as a guide for self-study and an in-depth resource for general readers.




Water Quality


Book Description

Water quality is important to everyone, but professionals in many disciplines need an understanding of this subject. Although water quality is complex, its general aspects can be grasped readily and with little background - only introductory chemistry and biology and a little algebra are needed. Unfortunately, the teaching of water quality is not well organized. In most colleges and universities, water quality instruction is given in certain engineering curricula and in aquatic ecology or fisheries curricula. There also is brief attention to selected topics on water quality in numerous classes in other curricula. Water quality training in engineering is highly specialized and directed by necessity towards water supply and water treatment, while the focus in aquatic ecology and fisheries is on biological water quality and pollution. Few students venture into specialized classes outside of their curricula, and as a result, their formal training in water quality is greatly restricted. Self-education by reading texts and reference books on water quality is difficult. Authors of water quality books seem to be more interested in presenting a rigorous, detailed treatment than in focusing on simplicity and clarity. Chemical aspects of water quality often are presented at a level requiring fairly advanced mathematics and physical chemistry, and biological discussions may be quite advanced and theoretical. I have taught water quality to seniors and graduate students in agriculture, wildlife and fisheries, environmental sciences, economics, and similar disciplines for many years.




Water Quality


Book Description

Water Quality: An Introduction provides an in-depth but relatively simple treatment of water quality, including a discussion of basic physical, chemical, and biological principles. Effort has been made to use physical and chemical principles to explain the factors controlling the quality of natural waters. Water Quality: An Introduction is a text for a general course in water quality or as a guide for self-study."--BOOK JACKET.




Comprehensive Water Quality and Purification


Book Description

Comprehensive Water Quality and Purification, Four Volume Set provides a rich source of methods for analyzing water to assure its safety from natural and deliberate contaminants, including those that are added because of carelessness of human endeavors. Human development has great impact on water quality, and new contaminants are emerging every day. The issues of sampling for water analysis, regulatory considerations, and forensics in water quality and purity investigations are covered in detail. Microbial as well as chemical contaminations from inorganic compounds, radionuclides, volatile and semivolatile compounds, disinfectants, herbicides, and pharmaceuticals, including endocrine disruptors, are treated extensively. Researchers must be aware of all sources of contamination and know how to prescribe techniques for removing them from our water supply. Unlike other works published to date that concentrate on issues of water supply, water resource management, hydrology, and water use by industry, this work is more tightly focused on the monitoring and improvement of the quality of existing water supplies and the recovery of wastewater via new and standard separation techniques Using analytical chemistry methods, offers remediation advice on pollutants and contaminants in addition to providing the critical identification perspective The players in the global boom of water purification are numerous and varied. Having worked extensively in academia and industry, the Editor-in-Chief has been careful about constructing a work for a shared audience and cause




Monitoring Water Quality


Book Description

Monitoring Water Quality is a practical assessment of one of the most pressing growth and sustainability issues in the developed and developing worlds: water quality. Over the last 10 years, improved laboratory techniques have led to the discovery of microbial and viral contaminants, pharmaceuticals, and endocrine disruptors in our fresh water supplies that were not monitored previously. This book offers in-depth coverage of water quality issues (natural and human-related), monitoring of contaminants, and remediation of water contamination. In particular, readers will learn about arsenic removal techniques, real-time monitoring, and risk assessment. Monitoring Water Quality is a vital text for students and professionals in environmental science, civil engineering, chemistry — anyone concerned with issues of water analysis and sustainability assessment. - Covers in depth the scope of sustainable water problems on a worldwide scale - Provides a rich source of sophisticated methods for analyzing water to assure its safety - Describes the monitoring of contaminants, including pharmaceutical and endocrine disruptors - Helps to quickly identify the sources and fates of contaminants and sources of pollutants and their loading




Industrial Water Quality


Book Description

"The Fourth Edition of Industrial Water Quality provides the technical methods, latest information, and current regulations necessary to conceive, design, and operate industrial pollution control facilities - either as an upgrade or as newly developed industrial complex. Advanced technologies are included as well as updated approaches to control, troubleshoot, and solve the complex issues of managing industrial wastewaters and residuals."--BOOK JACKET.




Measuring Water Quality Benefits


Book Description

Almost 5 years ago we began working together on research for the U.S. Environmental Protec tion Agency (EPA) to measure the benefits of water quality regulations. EPA had awarded a contract to Research Triangle Inst~ute (RTIl in response to a proposal that Bill wrote on measuring these benefits. After meeting with the EPA project officer, Dr Ann Fisher, the basic outlines of what would become this research were framed. Upon the suggestion of Bob Anderson, then chief of the Benefits Branch at EPA, we selected the Monongahela River as the focal point of a case study that would compare alternative benefit measurement approaches. Exactly how this case study would be done remained vague, but Ann urged that there be a survey and that nonuse benefits be included in the question naire design. Of course, Bill agreed. At the same time, Kerry was independently working on a review article that tied together some of the loose threads in the option value literature. He had also been thinking about how to measure option value, as well as working on ways to generalize the travel cost approach for estimating benefits of site attributes. Glenn Morris at RTI suggested that Bill have lunch with him and Kerry and that they could talk about Bill's research to see if there were any mutual interest. Over the lunch and Bill's ever present dessert in a Chapel Hill restaurant, we found out just how much we have in common.




Assessment of Treatment Plant Performance and Water Quality Data: A Guide for Students, Researchers and Practitioners


Book Description

This book presents the basic principles for evaluating water quality and treatment plant performance in a clear, innovative and didactic way, using a combined approach that involves the interpretation of monitoring data associated with (i) the basic processes that take place in water bodies and in water and wastewater treatment plants and (ii) data management and statistical calculations to allow a deep interpretation of the data. This book is problem-oriented and works from practice to theory, covering most of the information you will need, such as (a) obtaining flow data and working with the concept of loading, (b) organizing sampling programmes and measurements, (c) connecting laboratory analysis to data management, (e) using numerical and graphical methods for describing monitoring data (descriptive statistics), (f) understanding and reporting removal efficiencies, (g) recognizing symmetry and asymmetry in monitoring data (normal and log-normal distributions), (h) evaluating compliance with targets and regulatory standards for effluents and water bodies, (i) making comparisons with the monitoring data (tests of hypothesis), (j) understanding the relationship between monitoring variables (correlation and regression analysis), (k) making water and mass balances, (l) understanding the different loading rates applied to treatment units, (m) learning the principles of reaction kinetics and reactor hydraulics and (n) performing calibration and verification of models. The major concepts are illustrated by 92 fully worked-out examples, which are supported by 75 freely-downloadable Excel spreadsheets. Each chapter concludes with a checklist for your report. If you are a student, researcher or practitioner planning to use or already using treatment plant and water quality monitoring data, then this book is for you! 75 Excel spreadsheets are available to download.




Evolution of the Great Lakes Water Quality Agreement


Book Description

Water quality concerns are not new to the Great Lakes. They emerged early in the 20th century, in 1909, and matured in 1972 and 1978. They remain a prominent part of today's conflicted politics and advancing industrial growth. The Great Lakes Water Quality Agreement, under the Boundary Waters Treaty of 1909, became a model to the world for environmental management across an international boundary. Evolution of the Great Lakes Water Quality Agreement recounts this historic binational relationship, an agreement intended to protect the fragile Great Lakes. One strength of the agreement is its flexibility, which includes a requirement for periodic review that allows modification as problems are solved, conditions change, or scientific research reveals new problems. The first progress was made in the 1970s in the area of eutrophication, the process by which lakes gradually age, which normally takes thousands of years to progress, but is accelerated by modern water pollution. The binational agreement led to the successful lowering of phosphorus levels that saved Lake Erie and prevented accelerated eutrophication in the rest of the Great Lakes ecosystem. Another major success at the time was the identification and lowering of the levels of toxic contaminants that cause major threats to human and wildlife health, from accumulating PCBs and other persistent organic pollutants




Water Quality Monitoring and Management


Book Description

Water Quality Monitoring and Management: Basis, Technology and Case Studies presents recent innovations in operations management for water quality monitoring. It highlights the cost of using and choosing smart sensors with advanced engineering approaches that have been applied in water quality monitoring management, including area coverage planning and sequential scheduling. In parallel, the book covers newly introduced technologies like bulk data handling techniques, IoT of agriculture, and compliance with environmental considerations. Presented from a system engineering perspective, the book includes aspects on advanced optimization, system and platform, Wireless Sensor Network, selection of river water quality, groundwater quality detection, and more. It will be an ideal resource for students, researchers and those working daily in agriculture who must maintain acceptable water quality. - Discusses field operations research and application in water science - Includes detection methods and case analysis for water quality management - Encompasses rivers, lakes, seas and groundwater - Covers water for agriculture, aquaculture, drinking and industrial uses