Proceedings of a Workshop on Water Quality Modelling for the Northern River Basins Study, March 22-23, 1993


Book Description

This report summarizes discussions and conclusions from a workshop on water quality modelling approaches for the Peace and Athabasca Rivers. Workshop objectives included identification of research needs in terms of water quality models, discussion and assessment of existing water quality models in terms of short- and long-term needs for basin management, review and assessment of model structure, examination of rate coefficients and the limitations of available data bases, and identification of issues and areas requiring further research. Sections of the report cover the hydrology of the Peace-Athabasca rivers, water quality monitoring programs in those rivers, water quality modelling approaches (including stochastic models, the WASP4 program, the Dynamic Stream Simulation and Assessment Model, pattern recognition techniques, and alternative approaches), and water quality modelling recommendations for the Northern River Basins Study. Includes glossary.







Water Resource Systems Planning and Management


Book Description

This book is open access under a CC BY-NC 4.0 license. This revised, updated textbook presents a systems approach to the planning, management, and operation of water resources infrastructure in the environment. Previously published in 2005 by UNESCO and Deltares (Delft Hydraulics at the time), this new edition, written again with contributions from Jery R. Stedinger, Jozef P. M. Dijkman, and Monique T. Villars, is aimed equally at students and professionals. It introduces readers to the concept of viewing issues involving water resources as a system of multiple interacting components and scales. It offers guidelines for initiating and carrying out water resource system planning and management projects. It introduces alternative optimization, simulation, and statistical methods useful for project identification, design, siting, operation and evaluation and for studying post-planning issues. The authors cover both basin-wide and urban water issues and present ways of identifying and evaluating alternatives for addressing multiple-purpose and multi-objective water quantity and quality management challenges. Reinforced with cases studies, exercises, and media supplements throughout, the text is ideal for upper-level undergraduate and graduate courses in water resource planning and management as well as for practicing planners and engineers in the field.




A Review and Evaluation of Water Quality and Quantity Models Used by the Northern River Basins Study


Book Description

Summarizes the major modelling projects undertaken to model water quality in the Peace, Athabasca, and Slave river systems. The first section describes the scope of the problem of modelling water quality in large complex systems that are relatively oligotrophic, located at relatively high altitudes, and experience highly seasonal environmental fluctuations. It also provides a summary of the models used to predict key water quality variables. Section 2 gives a general overview of the utility and shortcomings of water quality models, with the goal of establishing key criteria for assessing the successes of models developed by the Northern River Basins Study (NRBS). Section 3 summarizes key findings of the NRBS models and evaluates the results against criteria outlined in section 2. Section 4 presents a series of recommendations for modelling dissolved oxygen, transport and fate of contaminants, and distribution of contaminants in the food chain, along with strategic suggestions for future work.




Review of the New York City Watershed Protection Program


Book Description

New York City's municipal water supply system provides about 1 billion gallons of drinking water a day to over 8.5 million people in New York City and about 1 million people living in nearby Westchester, Putnam, Ulster, and Orange counties. The combined water supply system includes 19 reservoirs and three controlled lakes with a total storage capacity of approximately 580 billion gallons. The city's Watershed Protection Program is intended to maintain and enhance the high quality of these surface water sources. Review of the New York City Watershed Protection Program assesses the efficacy and future of New York City's watershed management activities. The report identifies program areas that may require future change or action, including continued efforts to address turbidity and responding to changes in reservoir water quality as a result of climate change.




Improving Water Quality in the Mississippi River Basin and Northern Gulf of Mexico


Book Description

Most water resources managers, scientists, and other experts would agree that nonpoint source pollution is a more pressing and challenging national water quality problem today than point source pollution. Nonpoint sources of pollutants include parking lots, farm fields, forests, or any source not from a discrete conveyance such as a pipe or canal. Of particular concern across the Mississippi River basin (MRB) are high levels of nutrient loadings--nitrogen and phosphorus--from both nonpoint and point sources that ultimately are discharged into the northern Gulf of Mexico (NGOM). Nutrients emanate from both point and nonpoint sources across the river basin, but the large majority of nutrient yields across the MRB are nonpoint in nature and are associated with agricultural activities, especially applications of nitrogen-based fertilizers and runoff from concentrated animal feeding operations. Improving Water Quality in the Mississippi River Basin and Northern Gulf of Mexico offers strategic advice and priorities for addressing MRB and NGOM water quality management and improvements. Although there is considerable uncertainty as to whether national water quality goals can be fully realized without some fundamental changes to the CWA, there is general agreement that significant progress can be made under existing statutory authority and budgetary processes. This book includes four sections identifying priority areas and offering recommendations to EPA and others regarding priority actions for Clean Water Act implementation across the Mississippi River basin. These sections are: USDA's Mississippi River Basin Healthy Watersheds Initiative; Numeric Water Quality Criteria for the northern Gulf of Mexico; A Basinwide Strategy for Nutrient Management and Water Quality; and, Stronger Leadership and Collaboration.




Water Pollution: Modelling, Measuring and Prediction


Book Description

Water Pollution is a subject of growing concern in our industrial world. The environmental problems caused by the increase of pollutant loads dis charged into natural water systems have led the scientific community to pursue studies capable of relating the pollutant discharge with changes in the water quality. The results of these studies are permitting industries to employ more efficient methods of controlling and treating the waste loads, and water authorities to enforce more strict legislation regarding this matter. The present book contains edited versions of the papers presented at the First International Conference on Water Pollution (Modelling, Measuring and Prediction), held in Southampton, England, in September 1991. Its contents, which reflect the interdisciplinarity of the subject, are divided into four parts, each consisting of a keynote address and several invited and contributed papers: 1. Mathematical models (Keynote speaker: Prof. R.A. Falconer, Univer sity of Bradford, USA) 2. Data acquisition/monitoring/measurement (Keynote speaker: Dr. A. Plata Bedmar, IAEA, Austria) 3. Waste disposal and wastewater treatment (Keynote speaker: Prof. D.R.F. Harleman, MIT, USA) 4. Chemical and biological problems (Keynote speaker: Dr. E.I. Hamil ton, Environmental consultant, UK) Although the papers have been typographically edited they have been re produced directly from material submitted by the authors, and their content is a reflection of the authors' research and opinion.




River Water Quality Model


Book Description

This Scientific and Technical Report (STR) presents the findings of the IWA Task Group on River Water Quality Modelling (RWQM). The task group was formed to create a scientific and technical base from which to formulate standardized, consistent river water quality models and guidelines for their implementation. This STR presents the first outcome in this effort: River Water Quality Model No. 1 (RWQM1). As background to the development of River Water Quality Model No.1, the Task Group completed a critical evaluation of the current state of the practice in water quality modelling. A major limitation in model formulation is the continued reliance on BOD as the primary state variable, despite the fact BOD does not include all biodegradable matter. A related difficulty is the poor representation of benthic flux terms. As a result of these limitations, it is impossible to close mass balances completely in most existing models. These various limitations in current river water quality models impair their predictive ability in situations of marked changes in a river's pollutant load, streamflow, morphometry, or other basic characteristics. RWQM 1 is intended to serve as a framework for river water quality models that overcome these deficiencies in traditional water quality models and most particularly the failure to close mass balances between the water column and sediment. To these ends, the model incorporates fundamental water quality components and processes to characterise carbon, oxygen, nitrogen, and phosphorus (C, O, N, and P) cycling instead of biochemical oxygen demand as used in traditional models. The model is presented in terms of process and components represented via a 'Petersen stoichiometry matrix', the same approach used for the IWA Activated Sludge Models. The full RWQM1 includes 24 components and 30 processes. The report provides detailed examples on reducing the numbers of components and processes to fit specific water quality problems. Thus, the model provides a framework for both complicated and simplified models. Detailed explanations of the model components, process equations, stoichiometric parameters, and kinetic parameters are provided, as are example parameter values and two case studies. The STR is intended to launch a participatory process of model development, application, and refinement. RWQM1 provides a framework for this process, but the goal of the Task Group is to involve water quality professionals worldwide in the continued work developing a new water quality modelling approach. This text will be an invaluable reference for researchers and graduate students specializing in water resources, hydrology, water quality, or environmental modelling in departments of environmental engineering, natural resources, civil engineering, chemical engineering, environmental sciences, and ecology. Water resources engineers, water quality engineers and technical specialists in environmental consultancy, government agencies or regulated industries will also value this critical assessment of the state of practice in water quality modelling. Key Features presents a unique new technical approach to river water quality modelling provides a detailed technical presentation of the RWQM1 water quality process model gives an informative critical evaluation of the state of the practice in water quality modelling, and problems with those practices provides a step by step procedure to develop a water quality model Scientific & Technical Report No. 12




Water Quality Indices


Book Description

This book covers water quality indices (WQI) in depth – it describes what purpose they serve, how they are generated, what are their strengths and weaknesses, and how to make the best use of them. It is a concise and unique guide to WQIs for chemists, chemical/environmental engineers and government officials. Whereas it is easy to express the quantity of water, it is very difficult to express its quality because a large number of variables determine the water quality. WQIs seek to resolve the difficulty by translating a set of a large number of variables to a one-digit or a two-digit numeral. They are essential in communicating the status of different water resources in terms of water quality and the impact of various factors on it to policy makers, service personnel, and the lay public. Further they are exceedingly useful in the monitoring and management of water quality. With the importance of water and water quality increasing exponentially, the importance of this topic is also set to increase enormously because only with the use of indices is it possible to assess, express, communicate, and monitor the overall quality of any water source. - Provides a concise guide to WQIs: their purpose and generation - Compares existing methods and WQIs and outlines strengths and weaknesses - Makes recommendations on how the indices should be used and under what circumstances they apply