Water-Soluble Polymers for Petroleum Recovery


Book Description

We both found ourselves working on water-soluble polymers for oil recovery in the early 1980' s. Our previ ous backgrounds i nvo 1 ved the synthesi sand characteri zati on of hydrocarbon polymers for everythi ng from elastomers to plastics. As such, we were largely unprepared for the special difficulties associated with water soluble polymers in genera 1, and thei ruse in enhanced oi 1 recovery (EOR) , in parti cul ar. Oil patch applications have a jargon and technical heritage quite apart from that usually experienced by traditional polymer scientists. At that time, no books were available to help us "get up to speed" in the polymers for oil recovery field. Since then, there have been a number of symposia on this topic, but still few books, especially from the polymer (rather than the field-applications) perspective. Synthetic water soluble/swellable polymers have commercial importance in such application as water treatment, cosmetics, and foods. Yet, these polymers have not received the scientific/technological attention they deserve. The application of water soluble polymers to oil recovery has, in fact, highlighted the need for new water based materials, and a fundamental understanding of their structure and use. Interest has been spurred not only for the potenti a 1 economi c credi ts from enhanced oi 1 recovery and an augmented polymers business, but also by the challenge of designing water soluble polymers for harsh environments.







Polymer Flooding


Book Description

This book covers all aspects of polymer flooding, an enhanced oil recovery method using water soluble polymers to increase the viscosity of flood water, for the displacement of crude oil from porous reservoir rocks. Although this method is becoming increasingly important, there is very little literature available for the engineer wishing to embark on such a project. In the past, polymer flooding was mainly the subject of research. The results of this research are spread over a vast number of single publications, making it difficult for someone who has not kept up-to-date with developments during the last 10 to 15 years to judge the suitability of polymer flooding to a particular field case. This book tries to fill that gap. The basic mechanisms of the process are described and criteria given where it may be employed. Basic elements of the chemistry of EOR-polymers are provided. The fundamentals of polymer physics, such as rheology, flow in porous media and adsorption, are derived. Practical hints on mixing and testing of polymers in the laboratory are given, as well as instructions for their application in the oil field. Polymer flooding is illustrated by some case histories and the economics of the methods are examined. For the essential subjects, example calculations are added. An indispensable book for reservoir engineers, production engineers and laboratory technicians within the petroleum industry.




Water Soluble Polymers


Book Description

This volume contains a series of papers originally presented at the symposium on Water Soluble Polymers: Solution Properties and Applications, sponsored by the Division of Colloids and Surface Chemistry of the American Chemical Society. The symposium took place in Las Vegas City, Nevada on 9 to 11th September, 1997 at the 214th American Chemical Society National Meeting. Recognized experts in their - spective fields were invited to speak. There was a strong attendance from academia, g- ernment, and industrial research centers. The purpose of the symposium was to present and discuss recent developments in the solution properties of water soluble polymers and their applications in aqueous systems. Water soluble polymers find applications in a number of fields of which the following may be worth mentioning: cosmetics, detergent, oral care, industrial water treatment, g- thermal, wastewater treatment, water purification and reuse, pulp and paper production, sugar refining, and many more. Moreover, water soluble polymers play vital role in the oil industry, especially in enhanced oil recovery. Water soluble polymers are also used in ag- culture and controlled release pharmaceutical applications. Therefore, a fundamental kno- edge of solution properties of these polymers is essential for most industrial scientists. An understanding of the basic phenomena involved in the application of these polymers, such as adsorption and interaction with different substrates (i. e. , tooth enamel, hair, reverse - mosis membrane, heat exchanger surfaces, etc. ) is of vital importance in developing high performance formulations for achieving optimum efficiency of the system.




Chemical Enhanced Oil Recovery (cEOR)


Book Description

Commercial application of chemical enhanced oil recovery (cEOR) processes is expected to grow significantly over the next decade. Thus, Chemical Enhanced Oil Recovery (cEOR): A Practical Overview offers key knowledge and understanding of cEOR processes using an evidence-based approach intended for a broad audience ranging from field operators, researchers, to reservoir engineers dealing with the development and planning of cEOR field applications. This book is structured into three sections; the first section surveys overall EOR processes. The second section focuses on cEOR processes, while the final section describes the electrorheology technology. These sections are presented using a practical and realistic approach tailored for readers looking to improve their knowledge and understanding of cEOR processes in a nutshell.




Polymeric Surfactants


Book Description

Polymeric Surfactants covers the structure and stability origins of these highly useful surfactants. Adsorption and solution properties in emulsions are discussed based on their underlying thermodynamics and kinetics. Research scientists and Ph.D. students investigating chemistry, chemical engineering and colloidal science will benefit from this text on polymeric surfactants and their value in preparation and stabilization of disperse systems.




Water-soluble Polymers


Book Description

Brings together the diverse experience of those working with and using water-soluble polymers. Gives a detailed description of important advances in inversion emulsion polymerization of synthetic water-soluble monomers. Reports on the tremendous increase in research and the state-of-the-art in fundamental concepts and application performance of water-soluble polymers. Looks at the solution properties of some important carbohydrate polymers, and examines recent developments in the characterization of water-soluble polymers by chromatographic and NMR techniques.




Water-Soluble Polymers


Book Description

Water-soluble polymers have been attracting increasing atten tion because of their utility in industrial applications of great current concern. Perhaps preeminent among these is their ability to flocculate suspended solids, e.g., wastes in municipal sew age-treatment plants or pulp in papermaking. other important appli cations are to aid in so-called secondary recovery of petroleum, to reduce turbulent friction of water, and as components of water-based finishes developed in response to environmental con straints. Some water-soluble polymers have shown interesting bio logic activity, which is being investigated further. This book is based on papers presented at a symposium held by the American Chemical Society, Division of Organic Coatings and Plastics Chemistry, in New York City on 30-31 August 1972. The large attendance and the favorable response of the audience con firmed not only our view of the importance of the field but also the need to bring these topics together. The chapters in this book are generally enlarged and more detailed, with more complete bibliographies, than the papers presented at the Symposium. They include not only the important applications described above, but also descriptions of new syntheses and characterization methods.




Viscoelastic and Viscoplastic Materials


Book Description

This book introduces numerous selected advanced topics in viscoelastic and viscoplastic materials. The book effectively blends theoretical, numerical, modeling and experimental aspects of viscoelastic and viscoplastic materials that are usually encountered in many research areas such as chemical, mechanical and petroleum engineering. The book consists of 14 chapters that can serve as an important reference for researchers and engineers working in the field of viscoelastic and viscoplastic materials.




Enhanced Oil Recovery Field Case Studies


Book Description

Enhanced Oil Recovery Field Case Studies bridges the gap between theory and practice in a range of real-world EOR settings. Areas covered include steam and polymer flooding, use of foam, in situ combustion, microorganisms, "smart water"-based EOR in carbonates and sandstones, and many more. Oil industry professionals know that the key to a successful enhanced oil recovery project lies in anticipating the differences between plans and the realities found in the field. This book aids that effort, providing valuable case studies from more than 250 EOR pilot and field applications in a variety of oil fields. The case studies cover practical problems, underlying theoretical and modeling methods, operational parameters, solutions and sensitivity studies, and performance optimization strategies, benefitting academicians and oil company practitioners alike. - Strikes an ideal balance between theory and practice - Focuses on practical problems, underlying theoretical and modeling methods, and operational parameters - Designed for technical professionals, covering the fundamental as well as the advanced aspects of EOR