Water Resources Engineering


Book Description

Environmental engineers continue to rely on the leading resource in the field on the principles and practice of water resources engineering. The second edition now provides them with the most up-to-date information along with a remarkable range and depth of coverage. Two new chapters have been added that explore water resources sustainability and water resources management for sustainability. New and updated graphics have also been integrated throughout the chapters to reinforce important concepts. Additional end-of-chapter questions have been added as well to build understanding. Environmental engineers will refer to this text throughout their careers.




Management of Legionella in Water Systems


Book Description

Legionnaires' disease, a pneumonia caused by the Legionella bacterium, is the leading cause of reported waterborne disease outbreaks in the United States. Legionella occur naturally in water from many different environmental sources, but grow rapidly in the warm, stagnant conditions that can be found in engineered water systems such as cooling towers, building plumbing, and hot tubs. Humans are primarily exposed to Legionella through inhalation of contaminated aerosols into the respiratory system. Legionnaires' disease can be fatal, with between 3 and 33 percent of Legionella infections leading to death, and studies show the incidence of Legionnaires' disease in the United States increased five-fold from 2000 to 2017. Management of Legionella in Water Systems reviews the state of science on Legionella contamination of water systems, specifically the ecology and diagnosis. This report explores the process of transmission via water systems, quantification, prevention and control, and policy and training issues that affect the incidence of Legionnaires' disease. It also analyzes existing knowledge gaps and recommends research priorities moving forward.




Water Resource Systems Planning and Management


Book Description

This book is open access under a CC BY-NC 4.0 license. This revised, updated textbook presents a systems approach to the planning, management, and operation of water resources infrastructure in the environment. Previously published in 2005 by UNESCO and Deltares (Delft Hydraulics at the time), this new edition, written again with contributions from Jery R. Stedinger, Jozef P. M. Dijkman, and Monique T. Villars, is aimed equally at students and professionals. It introduces readers to the concept of viewing issues involving water resources as a system of multiple interacting components and scales. It offers guidelines for initiating and carrying out water resource system planning and management projects. It introduces alternative optimization, simulation, and statistical methods useful for project identification, design, siting, operation and evaluation and for studying post-planning issues. The authors cover both basin-wide and urban water issues and present ways of identifying and evaluating alternatives for addressing multiple-purpose and multi-objective water quantity and quality management challenges. Reinforced with cases studies, exercises, and media supplements throughout, the text is ideal for upper-level undergraduate and graduate courses in water resource planning and management as well as for practicing planners and engineers in the field.




Sustainable Water Resources Management


Book Description

Sustainable Water Resources Management presents the most current thinking on the environmental, social, and political dimensions of sustainably managing the water supply at local, regional, or basin levels.




Industrial Water Management


Book Description

This CD-ROM shows how to systematically incorporate the principles of water conservation, recycling, and reuse into the design of new plants, retrofits of existing systems, and technology development. Technology summaries and case studies that support this systematic approach to water reuse, as well as recommendations for further research, are included. Included in the price of this CD-ROM is an additional chapter, available in December 2002, detailing water reuse opportunities by industry. The chapter will address the general uses of water in industry, their associated energy costs, and energy management as related to water use and water use reduction.




Soil and Water Management Systems


Book Description

In this book the engineering phases of soil and water conservation in agriculture are emphasized with the realization that all aspects must be considered, including agronomic, economic, environmental, biological, etc. This text includes subject matter on the management and design of soil and water conservation practices, as well as simple surveying and its application to field problems.




Water Demand Management


Book Description

A common characteristic of water demand in urban areas worldwide is its inexorable rise over many years; continued growth is projected over coming decades. The chief influencing factors are population growth and migration, together with changes in lifestyle, demographic structure and the possible effects of climate change (the detailed implications of climate change are not yet clear, and anyway will depend on global location, but must at least increase the uncertainty in security of supply). This is compounded by rapid development, creeping urbanization and, in some places, rising standards of living. Meeting this increasing demand from existing resources is self-evidently an uphill struggle, particularly in water stressed/scarce regions in the developed and developing world alike. There are typically two potential responses: either "supply-side" (meeting demand with new resources) or "demand-side" (managing consumptive demand itself to postpone or avoid the need to develop new resources). There is considerable pressure from the general public, regulatory agencies, and some governments to minimise the impacts of new supply projects (e.g. building new reservoirs or inter-regional transfer schemes), implying the emphasis should be shifted towards managing water demand by best utilising the water that is already available. Water Demand Management has been prepared by the academic, government and industry network WATERSAVE. The concept of the book is to assemble a comprehensive picture of demand management topics ranging from technical to social and legal aspects, through expert critical literature reviews. The depth and breadth of coverage is a unique contribution to the field and the book will be an invaluable information source for practitioners and researchers, including water utility engineers/planners, environmental regulators, equipment and service providers, and postgraduates. Contents Water consumption trends and demand forecasting techniques The technology, design and utility of rainwater catchment systems Understanding greywater treatment Water conservation products Water conservation and sewerage systems An introduction to life cycle and rebound effects in water systems Developing a strategy for managing losses in water distribution networks Demand management in developing countries Drivers and barriers for water conservation and reuse in the UK The economics of water demand management Legislation and regulation mandating and influencing the efficient use of water in England and Wales Consumer reactions to water conservation policy instruments Decision support tools for water demand management




Water Systems Analysis, Design, and Planning


Book Description

This book presents three distinct pillars for analysis, design, and planning: urban water cycle and variability as the state of water being; landscape architecture as the medium for built-by-design; and total systems as the planning approach. The increasing demand for water and urban and industrial expansions have caused myriad environmental, social, economic, and political predicaments. More frequent and severe floods and droughts have changed the resiliency and ability of water infrastructure systems to operate and provide services to the public. These concerns and issues have also changed the way we plan and manage our water resources. Focusing on urban challenges and contexts, the book provides foundational information regarding water science and engineering while also examining topics relating to urban stormwater, water supply, and wastewater infrastructures. It also addresses critical emerging issues such as simulation and economic modeling, flood resiliency, environmental visualization, satellite data applications, and digital data model (DEM) advancements. Features: Explores various theoretical, practical, and real-world applications of system analysis, design, and planning of urban water infrastructures Discusses hydrology, hydraulics, and basic laws of water flow movement through natural and constructed environments Describes a wide range of novel topics ranging from water assets, water economics, systems analysis, risk, reliability, and disaster management Examines the details of hydrologic and hydrodynamic modeling and simulation of conceptual and data-driven models Delineates flood resiliency, environmental visualization, pattern recognition, and machine learning attributes Explores a compilation of tools and emerging techniques that elevate the reader to a higher plateau in water and environmental systems management Water Systems Analysis, Design, and Planning: Urban Infrastructure serves as a useful resource for advanced undergraduate and graduate students taking courses in the areas of water resources and systems analysis, as well as practicing engineers and landscape professionals.




Operating Practices for Industrial Water Management: Influent water systems


Book Description

This is an easy-to-understand book for practical use by the operator or engineer in the plant. Organised as a field-guide, information is often presented in bullet-point format, graphs, diagrams and schematics that the operator can easily put to use in daily plant activity. References to many industrial standards, such as ASME, AQBMA, CTI and NACE, are included to provide comprehensive coverage rather than one picture from one association.




The Dams and Water Management Systems of Minoan Pseira


Book Description

Excavations at the Bronze Age seaport on Pseira Island uncovered the remains of sophisticated water retention systems that included the addition of retaining walls to prevent erosion, massive dams with associated reservoirs, and small check-dams to ravines that reached over one hundred meters in length in order to control water runoff and make it available for human use. Agriculture was one of the cornerstones of the Bronze Age Cretan economy, and it is no surprise that the ancient inhabitants of the island went to great lengths to control water runoff and make it available for human use. Despite the application of traditional archaeological survey methods, the full extent of the water management systems was not understood fully as the island's rugged topography prevented intensive and thorough survey of many places. The use of a differential Global Positioning System (dGPS) unit provided the opportunity to take a fresh look at the evidence for water management on the island. The results of this study contribute substantial amounts of new information on the little known subject of Minoan water conservation and control.