Water Transport in Plants Under Climatic Stress


Book Description

The prospect of future climate change has stimulated research into the physiological responses of plants to stress. Water is a key factor controlling the distribution and abundance of plants. This book brings together contributions from a range of experts who have worked on the cavitation of water in the transport system.




Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II


Book Description

This book presents the state-of-the-art in plant ecophysiology. With a particular focus on adaptation to a changing environment, it discusses ecophysiology and adaptive mechanisms of plants under climate change. Over the centuries, the incidence of various abiotic stresses such as salinity, drought, extreme temperatures, atmospheric pollution, metal toxicity due to climate change have regularly affected plants and, and some estimates suggest that environmental stresses may reduce the crop yield by up to 70%. This in turn adversely affects the food security. As sessile organisms, plants are frequently exposed to various environmental adversities. As such, both plant physiology and plant ecophysiology begin with the study of responses to the environment. Provides essential insights, this book can be used for courses such as Plant Physiology, Environmental Science, Crop Production and Agricultural Botany. Volume 2 provides up-to-date information on the impact of climate change on plants, the general consequences and plant responses to various environmental stresses.




Adaptation of Plants to Water and High Temperature Stress


Book Description

Morphological adaptations to water stress. Physiological adaptations to water stress. Adaptation to high temperature stress. Interaction and integration of adaptations to stress. Breeding and selection for adaptation to stress.




Responses of Organisms to Water Stress


Book Description

The same amount of water has been present on our planet for about 4 billion years, since shortly after the Earth was formed. Since then it has cycled through evaporation, condensation, precipitation and surface runoff multiple times. Water scarcity as an abiotic factor ranging from moderate to severe stress levels, accompanied by loss of moisture in the soil, is extremely hard for most organisms to cope with, particularly terrestrial plants and their food-chain dependents. Because of the potential for increasing temporary, or posssibly permanent, drought conditions in the future, there is intense focus on improving plant resistance to drought and increasing yield performance in water- limited environments through genotype selection in important crops. This book aims to contribute to understanding of how plants and other organisms respond to water stress conditions, and the various survival strategies adopted under differing moisture levels.




Climate Change and Crop Stress


Book Description

Climate Change and Crop Stress: Molecules to Ecosystems expounds on the transitional period where science has progressed to ‘post-genomics’ and the gene editing era, putting field performance of crops to the forefront and challenging the production of practical applicability vs. theoretical possibility. Researchers have concentrated efforts on the effects of environmental stress conditions such as drought, heat, salinity, cold, or pathogen infection which can have a devastating impact on plant growth and yield. Designed to deliver information to combat stress both in isolation and through simultaneous crop stresses, this edited compilation provides a comprehensive view on the challenges and impacts of simultaneous stresses. Presents a multidisciplinary view of crop stresses, empowering readers to quickly align their individual experience and perspective with the broader context Combines the mechanistic aspects of stresses with the strategic aspects Presents both abiotic and biotic stresses in a single volume




Plant Metabolomics


Book Description

Metabolomics – which deals with all metabolites of an organism – is a rapidly-emerging sector of post-genome research fields. It plays significant roles in a variety of fields from medicine to agriculture and holds a fundamental position in functional genomics studies and their application in plant biotechnology. This volume comprehensively covers plant metabolomics for the first time. The chapters offer cutting-edge information on analytical technology, bioinformatics and applications. They were all written by leading researchers who have been directly involved in plant metabolomics research throughout the world. Up-to-date information and future developments are described, thereby producing a volume which is a landmark of plant metabolomics research and a beneficial guideline to graduate students and researchers in academia, industry, and technology transfer organizations in all plant science fields.




Drought Stress Tolerance in Plants, Vol 1


Book Description

Abiotic stress adversely affects crop production worldwide, decreasing average yields for most of the crops to 50%. Among various abiotic stresses affecting agricultural production, drought stress is considered to be the main source of yield reduction around the globe. Due to an increasing world population, drought stress will lead to a serious food shortage by 2050. The situation may become worse due to predicated global climate change that may multiply the frequency and duration and severity of such abiotic stresses. Hence, there is an urgent need to improve our understanding on complex mechanisms of drought stress tolerance and to develop modern varieties that are more resilient to drought stress. Identification of the potential novel genes responsible for drought tolerance in crop plants will contribute to understanding the molecular mechanism of crop responses to drought stress. The discovery of novel genes, the analysis of their expression patterns in response to drought stress, and the determination of their potential functions in drought stress adaptation will provide the basis of effective engineering strategies to enhance crop drought stress tolerance. Although the in-depth water stress tolerance mechanisms is still unclear, it can be to some extent explained on the basis of ion homeostasis mediated by stress adaptation effectors, toxic radical scavenging, osmolyte biosynthesis, water transport, and long distance signaling response coordination. Importantly, complete elucidation of the physiological, biochemical, and molecular mechanisms for drought stress, perception, transduction, and tolerance is still a challenge to the plant biologists. The findings presented in volume 1 call attention to the physiological and biochemical modalities of drought stress that influence crop productivity, whereas volume 2 summarizes our current understanding on the molecular and genetic mechanisms of drought stress resistance in plants.




Water Stress and Crop Plants


Book Description

Plants are subjected to a variety of abiotic stresses such as drought, temperature, salinity, air pollution, heavy metals, UV radiations, etc. To survive under these harsh conditions plants are equipped with different resistance mechanisms which vary from species to species. Due to the environmental fluctuations agricultural and horticultural crops are often exposed to different environmental stresses leading to decreased yield and problems in the growth and development of the crops. Drought stress has been found to decrease the yield to an alarming rate of some important crops throughout the globe. During last few decades, lots of physiological and molecular works have been conducted under water stress in crop plants. Water Stress and Crop Plants: A Sustainable Approach presents an up-to-date in-depth coverage of drought and flooding stress in plants, including the types, causes and consequences on plant growth and development. It discusses the physiobiochemical, molecular and omic approaches, and responses of crop plants towards water stress. Topics include nutritional stress, oxidative stress, hormonal regulation, transgenic approaches, mitigation of water stress, approaches to sustainability, and modern tools and techniques to alleviate the water stress on crop yields. This practical book offers pragmatic guidance for scientists and researchers in plant biology, and agribusinesses and biotechnology companies dealing with agronomy and environment, to mitigate the negative effects of stress and improve yield under stress. The broad coverage also makes this a valuable guide enabling students to understand the physiological, biochemical, and molecular mechanisms of environmental stress in plants.




Effects of Stress on Photosynthesis


Book Description

This volume contains the papers, presented during a conference, organized jointly by the "Opzoekingsstation van Gorsem" and the "Limburgs Universitair Centrum", Belgium from 22 to 27 August 1982. For this third meeting, the chosen topic was the effect of different stresses on photosynthesis. Most of the research in this field is realized on water stress and temperature stress; this situation is refllected in the conference programme. However, the imp- tance of the other factors such as light, CO , salinity, anaerobiosis, was 2 also emphasized especially during the important discussion sessions. We express our gratitude to Drs. J. Gale, P. Jarvis, G.H. Krause, P.E. Kriedemann and P.S. Nobel for their excellent leadership during the discussion sessions. Particular thanks are also due to Dr. H.~i. Woolhouse who gave us an excellent inaugural address and whose erudition largely contributed to the interest of the discussions. For the first time in our experience of editors, we decided to use camera ready copies in order to publish more rapidly the proceedings and at a lower price. For a lot of reasons (among other things the bad choice of type of letter to be used and the choice of instructions to authors which were not perfectly followed by the authors), the technical presentation of this book will appear as non homogeneous; we accepted this lack of homogeneity with the hope tbat the publication time would be shorter in spite of the fact that, some authors delivered their manuscript with delay.




Climate Change and Plant Abiotic Stress Tolerance


Book Description

In this ready reference, a global team of experts comprehensively cover molecular and cell biology-based approaches to the impact of increasing global temperatures on crop productivity. The work is divided into four parts. Following an introduction to the general challenges for agriculture around the globe due to climate change, part two discusses how the resulting increase of abiotic stress factors can be dealt with. The third part then outlines the different strategies and approaches to address the challenge of climate change, and the whole is rounded off by a number of specific examples of improvements to crop productivity. With its forward-looking focus on solutions, this book is an indispensable help for the agro-industry, policy makers and academia.