Water use efficiency of arable and grassland crops in legume-based intercropping systems


Book Description

Legume-based intercropping systems have the potential for a more efficient use of water resources. This depends on various factors such as environmental conditions and genotypic characteristics. Therefore, several genotypes of legumes and non-legumes of arable, grassland and woody crops were tested comparing intercropping and pure stands under both greenhouse and field conditions. Greenhouse experiments with winter faba bean and winter wheat under water deficit revealed genotypic differences in the suitability for intercropping as well as effects on the microbial community. Field experiments with direct and remote measurements showed that including legumes in arable and grassland low-input systems improves water use efficiency and productivity in comparison to pure non-legumes. The grassland mixing partners perennial ryegrass and chicory had additional effects. Furthermore, arable intercropping reduced nitrous oxide emissions compared to fertilized wheat stands. From the consolidated results, some winter faba bean and white clover genotypes could be identified for further breeding for intercropping systems. In summary, intercropping with legumes improves the water use efficiency and the general performance and sustainability of the agro-ecosystem.




Advances in Agronomy


Book Description

Advances in Agronomy continues to be recognized as a leading reference and a first-rate source for the latest research in agronomy. Each volume contains an eclectic group of reviews by leading scientists throughout the world. Five volumes are published yearly which ensures that authors' contributions are disseminated to the readership in a timely manner. As always, the subjects covered are varied and exemplary of the myriad of subject matter dealt with by this long-running serial. - Timely and state-of-the-art reviews - Distinguished, well recognized authors - A venerable and iconic review series - Timely publication of submitted reviews







Sustainable Cropping Systems


Book Description

Global crop production must substantially increase to meet the needs of a rapidly growing population. This is constrained by the availability of nutrients, water, and land. There is also an urgent need to reduce the negative environmental impacts of crop production. Collectively, these issues represent one of the greatest challenges of the twenty-first century. Sustainable cropping systems based on ecological principles are the core of integrated approaches to solve this critical challenge. This special issue provides an international basis for revealing the underlying mechanisms of sustainable cropping systems to drive agronomic innovations. It includes review and original research articles that report novel scientific findings on improvement in cropping systems related to crop yields and their resistance to biotic and abiotic stressors, resource use efficiency, environmental impact, sustainability, and ecosystem services.







Breeding for Intercropping


Book Description




Crop Physiology


Book Description

From climate change to farming systems to genetic modification of organisms, Crop Physiology, Second Edition provides a practical tool for understanding the relationships and challenges of successful cropping. With a focus on genetic improvement and agronomy, this book addresses the challenges of environmentally sound production of bulk and quality food, fodder, fiber, and energy which are of ongoing international concern. The second edition of Crop Physiology continues to provide a unique analysis of these topics while reflecting important changes and advances in the relevant science and implementation systems. Contemporary agriculture confronts the challenge of increasing demand in terms of quantitative and qualitative production targets. These targets have to be achieved against the background of soil and water scarcity, worldwide and regional shifts in the patterns of land use driven by both climate change and the need to develop crop-based sources of energy, and the environmental and social aspects of agricultural sustainability. - Provides a view of crop physiology as an active source of methods, theories, ideas, and tools for application in genetic improvement and agronomy - Written by leading scientists from around the world - Combines environment-specific cropping systems and general principles of crop science to appeal to advanced students, and scientists in agriculture-related disciplines, from molecular sciences to natural resources management




Harvesting Plant and Microbial Biodiversity for Sustainably Enhanced Food Security


Book Description

The World population will reach 9 billion by 2050, with the majority of this growth occurring in developing countries. On the other hand, one in nine of the World's population suffers from chronic hunger, the vast majority of which live in developing countries. We therefore need to find new and sustainable solutions to feed this increasing population and alleviate the predicted negative impact of global changes on crop production. This e-Book deals with new strategies to improve food security and livelihoods in rural communities, reduce vulnerability, increase resilience and mitigate lthe impact of climate change and land degradation on agriculture. This collection of 18 articles addresses the major abiotic factors limiting crop production worldwide, how to characterize and exploit the available plant biodiversity to increase production and sustainability in agrosystems, and the use of beneficial microbes to improve production and reduce the use of fertilizers and pesticides.




The Challenge of Protein Crops as a Sustainable Source of Food and Feed for the Future


Book Description

Grain legumes, together with quinoa and amaranth (pseudocereals) and other crops are attractive candidates to satisfy the growing demand for plant protein production worldwide for food and feed. Despite their high value, many protein crops have not been adequately assessed and numerous species are underutilized. Special attention has to be paid to genetic diversity and landraces, and to the key limiting factors affecting yield, including water deficiency and other abiotic and biotic stresses, in order to obtain stable, reliable and sustainable crop production through the introduction and local adaptation of genetically improved varieties. Legumes, the main protein crops worldwide, contribute to the sustainable improvement of the environment due to their ability to fix nitrogen and their beneficial effects on the soil. They play a key role in the crop diversification and sustainable intensification of agriculture, particularly in light of new and urgent challenges, such as climate change and food security. In addition, the role of legumes in nutrition has been recognized as a relevant source of plant protein, together with other benefits for health. Chapters dealing with common bean, lupine, soybean, lentil, cowpea and Medicago are included in this book. Most contributions deal with legumes, but the significant number of papers on different aspects of quinoa gives an idea of the increasing importance of this protein crop. Pseudocereals, such as quinoa and amaranth, are good sources of proteins. Quinoa and amaranth seeds contain lysine, an essential amino acid that is limited in other grains. Nutritional evaluations of quinoa indicate that it constitutes a source of complete protein with a good balance among all of the amino acids needed for human diet, and also important minerals, vitamins, high quality oils and flavonoids. Other protein crops also included in this book are hemp, cotton and cereals (maize, wheat and rice). Although cereals protein content is not high, their seeds are largely used for human consumption. In this book are included articles dealing with all different aspects of protein crops, including nutritional value, breeding, genetic diversity, biotic and abiotic stress, cropping systems or omics, which may be considered crucial to help provide the plant proteins of the future. Overall, the participation of 169 authors in 29 chapters in this book indicates an active scientific community in the field, which appears to be an encouraging reflect of the global awareness of the need for sustainability and the promising future of proteins crops as a source of food and feed.




Organic Farming, Prototype for Sustainable Agricultures


Book Description

Stakeholders show a growing interest for organic food and farming (OF&F), which becomes a societal component. Rather than questioning whether OF&F outperforms conventional agriculture or not, the main question addressed in this book is how, and in what conditions, OF&F may be considered as a prototype towards sustainable agricultures. The book gathers 25 papers introduced in a first chapter. The first section investigates OF&F production processes and its capacity to benefit from the systems functioning to achieve higher self-sufficiency. The second one proposes an overview of organic performances providing commodities and public goods. The third one focuses on organics development pathways within agri-food systems and territories. As well as a strong theoretical component, this book provides an overview of the new challenges for research and development. It questions the benefits as well as knowledge gaps with a particular emphasis on bottlenecks and lock-in effects at various levels.