Wave Mechanics and Wave Loads on Marine Structures


Book Description

Wave Mechanics and Wave Loads on Marine Structures provides a new perspective on the calculation of wave forces on ocean structures, unifying the deterministic and probabilistic approaches to wave theory and combining the methods used in field and experimental measurement.Presenting his quasi-determinism (QD) theory and approach of using small-scale field experiments (SSFEs), author Paolo Boccotti simplifies the findings and techniques honed in his ground-breaking work to provide engineers and researchers with practical new methods of analysis. Including numerous worked examples and case studies, Wave Mechanics and Wave Loads on Marine Structures also discusses and provides useful FORTRAN programs, including a subroutine for calculating particle velocity and acceleration in wave groups, and programs for calculating wave loads on several kinds of structures. - Solves the conceptual separation of deterministic and stochastic approaches to wave theory seen in other resources through the application of quasi-determinism (QD) theory - Combines the distinct experimental activities of field measurements and wave tank experiment using small-scale field experiments (SSFEs) - Simplifies and applies the ground-breaking work and techniques of this leading expert in wave theory and marine construction




Ocean Wave Mechanics


Book Description

This is a textbook aimed at graduate students and offshore engineering practitioners that covers basic fluid mechanics and the deterministic and statistical descriptions of infinitesimal and finite amplitude water waves. It reviews the theory of wave loading on structures and closes with a chapter on the potential of ocean wave energy and devices for extracting it. Since the 1980s there has been tremendous progress in numerical and physical modelling of coastal and offshore structures in waves. This calls for a clear understanding of the phenomena of wave generation, propagation, deformation and its effects on marine structures. This book will help the reader to understand the many results and descriptions found in journals, reports and research papers. It is self-contained, and encompasses the fundamentals of the subject with sufficient description and illustrations.




Wave Forces on Offshore Structures


Book Description

This book provides a thorough understanding of the interaction of waves and currents with offshore structures.




Water Wave Mechanics For Engineers And Scientists


Book Description

This book is intended as an introduction to classical water wave theory for the college senior or first year graduate student. The material is self-contained; almost all mathematical and engineering concepts are presented or derived in the text, thus making the book accessible to practicing engineers as well.The book commences with a review of fluid mechanics and basic vector concepts. The formulation and solution of the governing boundary value problem for small amplitude waves are developed and the kinematic and pressure fields for short and long waves are explored. The transformation of waves due to variations in depth and their interactions with structures are derived. Wavemaker theories and the statistics of ocean waves are reviewed. The application of the water particle motions and pressure fields are applied to the calculation of wave forces on small and large objects. Extension of the linear theory results to several nonlinear wave properties is presented. Each chapter concludes with a set of homework problems exercising and sometimes extending the material presented in the chapter. An appendix provides a description of nine experiments which can be performed, with little additional equipment, in most wave tank facilities.




Waves And Wave Forces On Coastal And Ocean Structures


Book Description

This book focuses on: (1) the physics of the fundamental dynamics of fluids and of semi-immersed Lagrangian solid bodies that are responding to wave-induced loads; (2) the scaling of dimensional equations and boundary value problems in order to determine a small dimensionless parameter ε that may be applied to linearize the equations and the boundary value problems so as to obtain a linear system; (3) the replacement of differential and integral calculus with algebraic equations that require only algebraic substitutions instead of differentiations and integrations; and (4) the importance of comparing numerical and analytical computations with data from laboratories and/or nature.




Wave Mechanics for Ocean Engineering


Book Description

In a unitary way, this monograph deals with a wide range of subjects related to the mechanics of sea waves. The book highlights recent theoretical results on the dynamics of random wind-generated waves, on long-term wave statistics, and on beach planform evolution. A fresh approach is given to more traditional concepts. For example, new evidence from a recent series of small-scale field experiments is used to introduce some crucial topics like wave forces. Also, the book gives some worked examples for the design of offshore or coastal structures. An exciting subject dealt with in the book is the quasi-deterministic mechanics of three-dimensional wave groups in sea storms, and the loads exerted by these wave groups on offshore structures.The text is intended for researchers and graduate students in ocean engineering, but may also be understood by undergraduates. The more complex concepts are explained with examples or more extensive case studies.




Sea Loads on Ships and Offshore Structures


Book Description

After introducing the theory of the structural loading on ships and offshore structures based on the motions of wind, waves and currents, this text demonstrates its applications to conventional and non-conventional sea vessels, including extensive exercises and examples.




Wave Mechanics and Wave Loads on Marine Structures


Book Description

The analysis, design and construction of offshore structures is arguably one of the most demanding sets of tasks faced by the engineering profession. Over and above the usual conditions and situations met by land-based structures, offshore structures have the added complication of being placed in an ocean environment where hydrodynamic interaction effects and dynamic response become major considerations in their design. A basic understanding of a number of key subject areas is essential to an engineer likely to be involved in the design of offshore structures. Wave Mechanics and Wave Loads on Marine Structures provides a broad overview of some of the key factors in the analysis and design of offshore structures to be considered by an engineer uninitiated in the field of offshore engineering. Topics covered range from water wave theories, structure-fluid interaction in waves to the prediction of extreme values of response from spectral modeling approaches. It presents a new outlook on the measurement of wave forces on ocean structures, uniting the deterministic and probabilistic methodologies to wave theory and linking the methods used in field and experimental measurement.




Dynamics of Offshore Structures


Book Description

Unique, cutting-edge material on structural dynamics and natural forces for offshore structures Using the latest advances in theory and practice, Dynamics of Offshore Structures, Second Edition is extensively revised to cover all aspects of the physical forces, structural modeling, and mathematical methods necessary to effectively analyze the dynamic behavior of offshore structures. Both closed-form solutions and the Mathematica(r) software package are used in many of the up-to-date example problems to compute the deterministic and stochastic structural responses for such offshore structures as buoys; moored ships; and fixed-bottom, cable-stayed, and gravity-type platforms. Throughout the book, consideration is given to the many assumptions involved in formulating a structural model and to the natural forces encountered in the offshore environment. These analyses focus on plane motions of elastic structures with linear and nonlinear restraints, as well as motions induced by the forces of currents, winds, earthquakes, and waves, including the latest theories and information on wave mechanics. Topics addressed include multidegree of freedom linear structures, continuous system analysis (including the motion of cables and pipelines), submerged pile design, structural modal damping, fluid-structure-soil interactions, and single degree of freedom structural models that, together with plane wave loading theories, lead to deterministic or time history predictions of structural responses. These analyses are extended to statistical descriptions of both wave loading and structural motion. Dynamics of Offshore Structures, Second Edition is a valuable text for students in civil and mechanical engineering programs and an indispensable resource for structural, geotechnical, and construction engineers working with offshore projects.




Offshore Mechanics


Book Description

Covers theoretical concepts in offshore mechanics with consideration to new applications, including offshore wind farms, ocean energy devices, aquaculture, floating bridges, and submerged tunnels This comprehensive book covers important aspects of the required analysis and design of offshore structures and systems and the fundamental background material for offshore engineering. Whereas most of the books currently available in the field use traditional oil, gas, and ship industry examples in order to explain the fundamentals in offshore mechanics, this book uses more recent applications, including recent fixed-bottom and floating offshore platforms, ocean energy structures and systems such as wind turbines, wave energy converters, tidal turbines and hybrid marine platforms. Offshore Mechanics covers traditional and more recent methodologies used in offshore structure modelling (including SPH and hydroelasticity models). It also examines numerical techniques, including computational fluid dynamics and finite element method. Additionally, the book features easy-to-understand exercises and examples. Provides a comprehensive treatment for the case of recent applications in offshore mechanics for researchers and engineers Presents the subject of computational fluid dynamics (CFD) and finite element methods (FEM) along with the high fidelity numerical analysis of recent applications in offshore mechanics Offers insight into the philosophy and power of numerical simulations and an understanding of the mathematical nature of the fluid and structural dynamics with focus on offshore mechanic applications Offshore Mechanics: Structural and Fluid Dynamics for Recent Applications is an important book for graduate and senior undergraduate students in offshore engineering and for offshore engineers and researchers in the offshore industry.