Waveform Design for Active Sensing Systems


Book Description

Ideal for researchers and practitioners looking to develop and use computational algorithms for waveform design in diverse active sensing applications.




Spectrally Constrained Active Sensing Waveform and Receiver Filter Design


Book Description

We also consider the case of spectrally constrained waveform design for SAR and multiple-input, multiple-output (MIMO) SAR ground moving target indicator (GMTI). Here we show that by using Kronecker waveforms (one waveform embedded in another), it is possible to generate spectrally constrained waveforms that have low correlation zones. Furthermore, by using these Kronecker waveforms we are given control of the cross-correlation between the waveforms in the set. Using this approach we present a novel method for generating spectrally constrained waveform sets, which has not been explored in the recent literature. We demonstrate the efficacy of these waveforms using SAR and MIMO SAR GMTI simulations. This work is concluded by examining the possibilities and future directions of the spectrally constrained active sensing approaches described within. A major milestone is to perform tests using updated software defined radars. By doing this we can better understand the limitations of the designed waveforms and what parameters are more important than others. Here we could also understand how the non-linear effects of the transmitter and receiver front-end distort our signal and how to account for that in the design process. Finally, we would like to study improved methods of designing the receiver to improve detection and performance of these signals in extremely cluttered environments. All of these are critical to developing active sensing systems that can meet the upcoming stringent spectral requirements of the future.







Advances in Waveform-Agile Sensing for Tracking


Book Description

Recent advances in sensor technology and information processing afford a new flexibility in the design of waveforms for agile sensing. Sensors are now developed with the ability to dynamically choose their transmit or receive waveforms in order to optimize an objective cost function. This has exposed a new paradigm of significant performance improvements in active sensing: dynamic waveform adaptation to environment conditions, target structures, or information features. The manuscript provides a review of recent advances in waveform-agile sensing for target tracking applications. A dynamic waveform selection and configuration scheme is developed for two active sensors that track one or multiple mobile targets. A detailed description of two sequential Monte Carlo algorithms for agile tracking are presented, together with relevant Matlab code and simulation studies, to demonstrate the benefits of dynamic waveform adaptation. The work will be of interest not only to practitioners of radar and sonar, but also other applications where waveforms can be dynamically designed, such as communications and biosensing. Table of Contents: Waveform-Agile Target Tracking Application Formulation / Dynamic Waveform Selection with Application to Narrowband and Wideband Environments / Dynamic Waveform Selection for Tracking in Clutter / Conclusions / CRLB Evaluation for Gaussian Envelope GFM Chirp from the Ambiguity Function / CRLB Evaluation from the Complex Envelope




Signal Design for Modern Radar Systems


Book Description

This book gives you a comprehensive overview of key optimization tools that can be used to design radar waveforms and adaptive signal processing strategies under practical constraints -- strategies such as power method-like iterations, coordinate descent, and majorization-minimization – that help you to meet the more and more stressing sensing system requirements. The book walks you through how radar waveform synthesis is obtained as the solution to a constrained optimization problem such as finite energy, unimodularity (or being constant-modulus), and finite or discrete-phase (potentially binary) alphabet, which are dictated by the practical limitations of the real systems. Several approaches in each of these broad frameworks are detailed and various applications of these optimization techniques are described. Focusing on a holistic approach rather than a problem-specific approach, the book shows you what you need to effectively formulate waveform design and understand the flexibility of the framework for adapting to your own specific needs. You’ll have full access to the tools and knowledge you need to design waveform with optimized correlation/cross-correlation properties for SISO/SIMO and MIMO radars, taking into account spectral constraints for cognitive rads, as well as coexistence with communications and mitigate possible Doppler and quantization errors, and more. The book also includes representative software codes that further help you generate the described solutions. With its unique style of covering mathematical results along with their applications from diverse areas, this is a much-needed, detailed handbook for industry researchers, scientists and designers including medical, marine, defense, and automotive companies. It is also an excellent resource for advanced courses on radar signal processing.




Waveform Design and Diversity for Advanced Radar Systems


Book Description

This is the first book to discuss current and future applications of waveform diversity and design in subjects such as radar and sonar, communications systems, passive sensing, and many other technologies. Waveform diversity allows researchers and system designers to optimize electromagnetic and acoustic systems for sensing, communications, electronic warfare or combinations thereof. It enables solutions to problems with how each system performs its own particular function as well as how it is affected by other systems and how those other systems may likewise be affected. It is an excellent standalone introduction to waveform diversity and design, which takes a high potential technology area and makes it visible to other researchers, as well as young engineers.




Sparse Arrays for Radar, Sonar, and Communications


Book Description

Specialized resource providing detailed coverage of recent advances in theory and applications of sparse arrays Sparse Arrays for Radar, Sonar, and Communications discusses various design approaches of sparse arrays, including those seeking to increase the corresponding one-dimensional and two-dimensional virtual array apertures, as well as others that configure the arrays based on solutions of constrained minimization problems. The latter includes statistical bounds and signal-to-interference and noise ratio; in this respect, the book utilizes the recent strides made in convex optimizations and machine learning for sparse array configurability in both fixed and dynamic environments. Similar ideas are presented for sparse array-waveform design. The book also discusses the role of sparse arrays in improving target detection and resolution in radar, improving channel capacity in massive MIMO, and improving underwater target localization in sonar. It covers different sparse array topologies, and provides various approaches that deliver the optimum and semi-optimum sparse array transceivers. . Edited by a world-leading expert in Radar and Signal Processing and contributed to by world-class researchers in their respective fields, Sparse Arrays for Radar, Sonar, and Communications covers topics including: Utilizing sparse arrays in emerging technologies and showing their offerings in various sensing and communications applications Applying sparse arrays to different environments and obtain superior performances over conventional uniform arrays Solving the localization, beamforming, and direction-finding problems using non-uniform array structures for narrowband and wideband signals Designing sparse array structures for both stationary and moving platforms that produce physical and synthesized array apertures. Using deep neural networks that learn the underlying complex nonlinear model and output the sparse array configuration using representations of the input data spatio-temporal observations Solving for optimum sparse array configurations and beamforming coefficients in sensing using iterative convex optimization methods Providing complete coverage of the recent considerable progress in sparse array design and configurations, Sparse Arrays for Radar, Sonar, and Communications is an essential resource on the subject for graduate students and engineers pursuing research and applications in the broad areas of active/passive sensing and communications.




Advances in Waveform-agile Sensing for Tracking


Book Description

Recent advances in sensor technology and information processing afford a new flexibility in the design of waveforms for agile sensing. Sensors are now developed with the ability to dynamically choose their transmit or receive waveforms in order to optimize an objective cost function. This has exposed a new paradigm of significant performance improvements in active sensing: dynamic waveform adaptation to environment conditions, target structures, or information features. The manuscript provides a review of recent advances in waveform-agile sensing for target tracking applications. A dynamic waveform selection and configuration scheme is developed for two active sensors that track one or multiple mobile targets. A detailed description of two sequential Monte Carlo algorithms for agile tracking are presented, together with relevant Matlab code and simulation studies, to demonstrate the benefits of dynamic waveform adaptation. The work will be of interest not only to practitioners of radar and sonar, but also other applications where waveforms can be dynamically designed, such as communications and biosensing. Table of Contents: Waveform-Agile Target Tracking Application Formulation / Dynamic Waveform Selection with Application to Narrowband and Wideband Environments / Dynamic Waveform Selection for Tracking in Clutter / Conclusions / CRLB Evaluation for Gaussian Envelope GFM Chirp from the Ambiguity Function / CRLB Evaluation from the Complex Envelope




Topics in Radar Signal Processing


Book Description

Radar has been an important topic since its introduction, in a military context, during World War II. Due to advances in technology, it has been necessary to refine the algorithms employed within the signal processing architecture. Hence, this book provides a series of chapters examining some topics in modern radar signal processing. These include synthetic aperture radar, multiple-input multiple-output radar, as well as a series of chapters examining other key issues relevant to the central theme of the book.




Principles of Waveform Diversity and Design


Book Description

This is the first book to discuss current and future applications of waveform diversity and design in subjects such as radar and sonar, communications systems, passive sensing, and many other technologies. Waveform diversity allows researchers and system designers to optimize electromagnetic and acoustic systems for sensing, communications, electronic warfare or combinations thereof. This book enables solutions to problems, explaining how each system performs its own particular function, as well as how it is affected by other systems and how those other systems may likewise be affected. It is an excellent standalone introduction to waveform diversity and design, which takes a high potential technology area and makes it visible to other researchers, as well as young engineers.