Absorption Spectroscopy Studies in Low Pressure Non Equilibrium Molecular Plasmas Using Tunable Infrared Diode Lasers


Book Description

Tunable infrared diode laser absorption spectroscopy (TDLAS) has been applied to investigate the chemical kinetics in reactive discharges. It was used to detect the methyl radical and nine stable molecules, CH4, CH3OH, C2H2, C2H4, C2H6, NH3, HCN, CH2O and C2N2, in H2-Ar-N2 microwave plasmas containing up to 7.2 % of methane or methanol, under both flowing and static conditions. The degree of dissociation of the hydrocarbon precursor molecules varied between 20 and 97 %. The methyl radical concentration was found to be in the range 1012 to 1013 molecules cm-3. By analysing the temporal development of molecular concentrations under static conditions it was found that HCN and NH3 are the final products of plasma chemical conversion. The fragmentation rates of methane and methanol and the respective conversion rates to methane, hydrogen cyanide and ammonia have been determined for different hydrogen to nitrogen concentration ratios. An extensive model of the chemical reactions involved in the H2-N2-Ar-CH4 plasma has been developed. Model calculations were performed by including 22 species, 145 chemical reactions and appropriate electron impact dissociation rate coefficients. The results of the model calculations showed satisfactory agreement between calculated and measured concentrations. The most likely main chemical pathways involved in these plasmas are discussed and an appropriate reaction scheme is proposed. Based on the model calculations the concentrations of non-measured species like CH2 or NH2 have been predicted.In addition, spectroscopic investigations of P- and R-branch lines of the fundamental bands of 12C14N and 13C14N in their ground electronic state have been performed at high resolution by tunable diode laser absorption spectroscopy. The radicals were generated in microwave plasmas containing methane with varying proportions of N2 and H2. From a fit to the spectra the origins of the fundamental bands of the two isotopomers were determined to be 2042.42104(84) cm-1 and 2000.08470(30) cm-1. The main product detected in the plasma was HCN. It showed concentrations which are about three orders of magnitude higher than that of CN.Moreover, the time and spatial dependence of the chemical conversion of CO2 to CO were studied in a closed glow discharge reactor (p = 50 Pa, I = 2 and 30 mA) consisting of a small plasma zone and an extended stationary afterglow. Tunable infrared diode laser absorption spectroscopy has been applied to determine the absolute ground state concentrations of CO and CO2. After a certain discharge time the concentrations of both species were observed to come into equilibrium. The spatial dependence of the equilibrium CO concentration in the afterglow was found to vary by less than 10 %. The feed gas was converted to CO more predominantly between 45 % and 60 % with increasing discharge current. The formation time of the stable gas composition decreased with increasing current too. For currents higher than 10 mA the conversion rate of CO2 to CO was estimated to be 1 x 1013 molecules J-1. Based on the experimental results a model of the CO2 conversion chemistry has also been established for this type of discharge. The calculated and measured temporal developments of species concentrations showed a satisfactory agreement for various discharge currents.Lastly, infrared tunable diode laser absorption spectroscopy has been used to analyse the fragmentation of TiCl4 into HCl in pulsed H2-Ar-N2 dc plasmas (p= 2 mbar). At small TiCl4 admixtures (0.04-0.31 %) HCl concentrations of 2-5 x 1014 molecules cm-3 were measured (current density: 0.6-1.15 mA cm2). A nearly complete conversion of Cl into HCl was found at TiCl4 admixtures below 0.2 %.




New Enhanced Sensitivity Infrared Laser Spectroscopy Techniques Applied to Reactive Plasmas and Trace Gas Detection


Book Description

Infrared laser absorption spectroscopy (IRLAS) employing both tuneable diode and quantum cascade lasers (TDLs, QCLs) has been applied with both high sensitivity and high time resolution to plasma diagnostics and trace gas measurements. TDLAS combined with a conventional White type multiple pass cell was used to detect up to 13 constituent molecular species in low pressure Ar/H2/N2/O2 and Ar/CH4/N2/O2 microwave discharges, among them the main products such as H2O, NH3, NO and CO, HCN respectively. The hydroxyl radical has been measured in the mid infrared (MIR) spectral range in-situ in both plasmas yielding number densities of between 1011 ... 1012 cm-3. Strong indications of surface dominated formation of either NH3 or N2O and NO were found in the H2-N2-O2 system. In methane containing plasmas a transition between deposition and etching conditions and generally an incomplete oxidation of the precursor were observed. The application of QCLs for IRLAS under low pressure conditions employing the most common tuning approaches has been investigated in detail. A new method of analysing absorption features quantitatively when the rapid passage effect is present is proposed. If power saturation is negligible, integrating the undisturbed half of the line profile yields accurate number densities without calibrating the system. By means of a time resolved analysis of individual chirped QCL pulses the main reasons for increased effective laser line widths could be identified. Apart from the well-known frequency down chirp non-linear absorption phenomena and bandwidth limitations of the detection system may significantly degrade the performance and accuracy of inter pulse spectrometers. The minimum analogue bandwidth of the entire system should normally not fall below 250 MHz. QCLAS using pulsed lasers has been used for highly time resolved measurements in reactive plasmas for the first time enabling a time resolution down to about 100 ns to be achieved. A temperature increase of typically less than 50 K has been established for pulsed DC discharges containing Ar/N2 and traces of NO. The main NO production and depletion reactions have been identified from a comparison of model calculations and time resolved measurements in plasma pulses of up to 100 ms. Considerable NO struction is observed after 5 ... 10 ms due to the impact of N atoms. Finally, thermoelectrically cooled pulsed and continuous wave (cw) QCLs have been employed for high finesse cavity absorption spectroscopy in the MIR. Cavity ring down spectroscopy (CRDS) has been performed with pulsed QCLs and was found to be limited by the intrinsic frequency chirp of the laser suppressing an efficient intensity build-up inside the cavity. Consequently the accuracy and advantage of an absolute internal absorption calibration is not achievable. A room temperature cw QCL was used in a complementary cavity enhanced absorption spectroscopy (CEAS) configuration which was equipped with different cavities of up to 1.3 m length. This spectrometer yielded path lengths of up to 4 km and a noise equivalent absorption down to 4 x 10-8 cm-1Hz-1/2. The corresponding molecular concentration detection limit (e.g. for CH4, N2O and C2H2 at 1303 cm-1/7.66 Aem) was generally below 1 x 1010 cm-3 for 1 s integration times and one order of magnitude less for 30 s integration times. The main limiting factor for achieving even higher sensitivity is the residual mode noise of the cavity. Employing a 0.5 m long cavity the achieved sensitivity was good enough for the selective measurement of trace atmospheric constituents at 2.2 mbar.




Near Infrared Tunable Diode Laser Spectroscopy for Aero Engine Related Applications


Book Description

Tunable diode laser spectroscopy is a widely used technique for recovering quantitative gas information in a range of industrial applications. Established methods often use readily available, robust and low cost optoelectronic hardware in the near-infrared, with output wavelengths that coincide with the absorption spectra of several important gas species of interest, providing a versatile platform for gas analysis instrumentation. In this work the challenges associated with the recovery of gas information from harsh detection environments, particularly for aero engine diagnostics, are considered. For stand-alone instrumentation, calibration-free direct absorption measurements are highly advantageous yet calibrated techniques employing wavelength modulation spectroscopy are often favoured due to their significantly higher sensitivities. Recent developments have enabled calibration-free line shape recovery using lock-in amplifier detection of the residual amplitude modulation in wavelength modulated signals. These techniques have significant potential in harsh environments, but the overall sensitivity is limited by distortions to the recovered line shapes at high modulation amplitudes and by large background signals that saturate the detection electronics. In this thesis, solutions to these two problems are proposed, investigated and validated. A correction function is derived that is able to account for line shape distortions at arbitrarily high modulation indices. Application of the function depends upon knowledge of the experimental modulation index and two methods for extracting this information directly from the experimental signals are described. The full correction procedure has been experimentally validated. An investigation was made into the use of autobalanced photoreceivers, typically used for common mode noise cancellation, for direct absorption measurements and in a different configuration for nulling of the residual amplitude modulation (RAM) in wavelength modulation spectroscopy. Initial measurements suggest that removal of the background RAM can increase the lock-in detection sensitivity by over an order of magnitude. In addition an external amplitude modulator has been iv shown to be an effective method for producing sensitive absorption signals that are free of distortions, recoverable at frequencies that are outside the bandwidth of most environmental noise sources. A temperature sensor based on ratio thermometry of ambient water vapour absorption was designed and evaluated. The sensor is intended to provide accurate intake gas temperature information during aero engine ground testing when misting conditions prevent standard thermocouples from providing reliable data. Direct detection and second harmonic wavelength modulation spectroscopy experiments were undertaken in an environmental chamber, over the range 273-313K, to test the potential accuracy of the proposed system. Using a second harmonic peak height method, temperature information based on a calibration was able to recover temperature measurements with precision of ±0.4K however the overall accuracy suffered from a problematic calibration drift. Three engine test campaigns are described in which a range of recovery methods and potential optical system layouts are evaluated for the purposes of intake and exhaust mounted test bed sensor systems. The effects of extreme noise conditions were observed on a variety of measurements and favourable detection and modulation options were identified for the purpose of planning proposed future engine tests. Exhaust plume measurements of high temperature water vapour on the Rolls-Royce Environmentally Friendly Engine demonstrator established the viability of temperature and concentration measurements up to 850K.
















Laser Absorption Spectroscopy Techniques for Determining Gas Properties in High Pressure Rocket Combustors


Book Description

This dissertation describes laser absorption spectroscopy methods developed for temperature and carbon oxide (CO and CO2) sensing in high-pressure, fuel-rich combustion conditions of hydrocarbon-fueled bipropellant rockets. The scope of the work includes fundamental studies of spectroscopic interactions at high gas density, development of unique laser tuning and signal processing methods, and application of prototype sensors to rocket combustion devices under investigation at the Air Force Research Laboratory in Edwards, CA. Infrared vibrational spectra of CO and CO2 were probed using tunable semi-conductor lasers to infer gas properties. Initial sensor design targeted the absorption spectra of CO near 4.98 m, selected to minimize spectral interference with other combustion gas species at the extreme temperatures (> 3000 K) and pressures (> 50 atm) of a kerosene-fueled rocket combustion environment. Successful measurements were conducted up to 70 bar utilizing a scanned wavelength modulation spectroscopy technique, creating a new pressure-limit for quantitative in situ species sensing in a combustion device. At higher pressures (which were tested), collisional-broadening effects blended the targeted absorption transitions, causing differential absorption to diminish and reducing the signal-to-noise ratio of the measurements. To overcome the pressure-constraints, a more advanced laser absorption sensing strategy was developed, targeting the vibrational bandheads of CO near 2.3 m and CO2 near 4.2 m and exploiting the band narrowing effects of collisional line mixing to counter collisional broadening. Spectral line mixing--typically observed at high gas densities in which intermolecular collisions are sufficiently frequent and strong to cause a shift in energy level populations--corresponds to a transfer of absorption intensity from weak to strong absorption regions, inducing a narrowing of spectral features. This non-ideal phenomenon is more prominent in spectrally dense regions, such as bandheads. Targeting infrared bandheads to exploit line mixing, measurements of CO and CO2 concentration were demonstrated over a range of high pressures up to 105 bar in a single-element-injector RP-2/CH4-GOx rocket combustor. To make such measurements quantitative,spectroscopic models accounting line mixing effects have been developed utilizing a high-enthalpy shock tube; these models are then employed for interpretation of measured absorption signals for quantitative temperature and species sensing.




Gain and Loss Mechanisms in Fluorocarbon Plasmas


Book Description

Understanding dominant reaction channels for important gas-phase species in fluorocarbon plasmas is crucial to the ability to control surface evolution and morphology. In order to accomplish this goal a modified GEC reference ICP reactor is used in tandem with Fourier transform infrared spectroscopy (FTIR) to measure the densities of stable species. Integrated absorption cross-sections are presented for all fundamental bands in the 650 cm -1 to 2000 cm -1 region for C 3 F 6 , C 4 F 8 , C 3 F 8 , C 2 F 6 , C 2 F 4 , and CF 4 . The results show that although the absorption profile changes significantly, the integrated absorption cross-sections, with the exception of CF 4 , do not change significantly as gas temperature increases from 25°C to 200°C. However, the internal temperature of the absorbing species can be estimated from the rotational band maximum in most cases. Species densities obtained with the aforementioned cross-sections are used with a novel analysis technique to quantify gain and loss rates as functions of residence time, pressure, and deposited power. CF 4 , C 2 F 6 , C 3 F 8 , and C 4 F 10 , share related production channels, which increase in magnitude as the plasma pressure, deposited power, or surface temperature are raised. CF 2 is primarily produced through a combination of surface production (the magnitude also increases with temperature) and electron impact dissociation of C 2 F 4 , while it is predominantly lost in the large reactor to gas-phase addition to form C 2 F 4 . Time-resolved FTIR results are used to measure a cross-section of 1.8x10 -14 cm 3 /s for the reaction between CF 2 radicals creating C 2 F 4 . Finally, C 2 F 4 originates through the electron impact dissociation of c- C 4 F 8 . The loss process for C 2 F 4 is undetermined, but the results indicate that it could occur on reactor surfaces. Neither the density of fluorine nor the ion flux to the chuck surface changes substantially with wall temperature. We show that increases in the deposition rate in a heated chamber are due to an increase in the fluxes of depositing neutral species. Furthermore, the sticking coefficient for these species does not change significantly as a function of surface temperature. Instead, surface temperature elevates the yield of etchant species, which terminate broken bonds to increase the desorption rates of stable species.