Highly Oscillatory Problems


Book Description

Review papers from experts in areas of active research into highly oscillatory problems, with an emphasis on computation.




Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization


Book Description

Presents interplays between numerical approximation and statistical inference as a pathway to simple solutions to fundamental problems.




Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena


Book Description

Model reduction and coarse-graining are important in many areas of science and engineering. How does a system with many degrees of freedom become one with fewer? How can a reversible micro-description be adapted to the dissipative macroscopic model? These crucial questions, as well as many other related problems, are discussed in this book. All contributions are by experts whose specialities span a wide range of fields within science and engineering.




Acta Numerica 2008: Volume 17


Book Description

A high-impact, prestigious annual publication containing invited surveys by subject leaders: essential reading for all practitioners and researchers.




Multiscale Modeling and Simulation in Science


Book Description

Most problems in science involve many scales in time and space. An example is turbulent ?ow where the important large scale quantities of lift and drag of a wing depend on the behavior of the small vortices in the boundarylayer. Another example is chemical reactions with concentrations of the species varying over seconds and hours while the time scale of the oscillations of the chemical bonds is of the order of femtoseconds. A third example from structural mechanics is the stress and strain in a solid beam which is well described by macroscopic equations but at the tip of a crack modeling details on a microscale are needed. A common dif?culty with the simulation of these problems and many others in physics, chemistry and biology is that an attempt to represent all scales will lead to an enormous computational problem with unacceptably long computation times and large memory requirements. On the other hand, if the discretization at a coarse level ignoresthe?nescale informationthenthesolutionwillnotbephysicallymeaningful. The in?uence of the ?ne scales must be incorporated into the model. This volume is the result of a Summer School on Multiscale Modeling and S- ulation in Science held at Boso ¤n, Lidingo ¤ outside Stockholm, Sweden, in June 2007. Sixty PhD students from applied mathematics, the sciences and engineering parti- pated in the summer school.




Spatial Accuracy Assessment in Natural Resources and Environmental Sciences


Book Description

This international symposium on theory and techniques for assessing the accuracy of spatial data and spatial analyses included more than ninety presentations by representatives from government, academic, and private institutions in over twenty countries throughout the world. To encourage interactions across disciplines, presentations in the general subject areas of spatial statistics, geographic information systems, remote sensing, and multidisciplinary approaches were intermixed throughout the three days of sessions.




Multiscale Finite Element Methods


Book Description

The aim of this monograph is to describe the main concepts and recent - vances in multiscale ?nite element methods. This monograph is intended for thebroaderaudienceincludingengineers,appliedscientists,andforthosewho are interested in multiscale simulations. The book is intended for graduate students in applied mathematics and those interested in multiscale compu- tions. It combines a practical introduction, numerical results, and analysis of multiscale ?nite element methods. Due to the page limitation, the material has been condensed. Each chapter of the book starts with an introduction and description of the proposed methods and motivating examples. Some new techniques are introduced using formal arguments that are justi?ed later in the last chapter. Numerical examples demonstrating the signi?cance of the proposed methods are presented in each chapter following the description of the methods. In the last chapter, we analyze a few representative cases with the objective of demonstrating the main error sources and the convergence of the proposed methods. A brief outline of the book is as follows. The ?rst chapter gives a general introductiontomultiscalemethodsandanoutlineofeachchapter.Thesecond chapter discusses the main idea of the multiscale ?nite element method and its extensions. This chapter also gives an overview of multiscale ?nite element methods and other related methods. The third chapter discusses the ext- sion of multiscale ?nite element methods to nonlinear problems. The fourth chapter focuses on multiscale methods that use limited global information.




Multiscale Model Reduction


Book Description

This monograph is devoted to the study of multiscale model reduction methods from the point of view of multiscale finite element methods. Multiscale numerical methods have become popular tools for modeling processes with multiple scales. These methods allow reducing the degrees of freedom based on local offline computations. Moreover, these methods allow deriving rigorous macroscopic equations for multiscale problems without scale separation and high contrast. Multiscale methods are also used to design efficient solvers. This book offers a combination of analytical and numerical methods designed for solving multiscale problems. The book mostly focuses on methods that are based on multiscale finite element methods. Both applications and theoretical developments in this field are presented. The book is suitable for graduate students and researchers, who are interested in this topic.




Quantum Transport


Book Description

In this volume, a result of The CIME Summer School held in Cetraro, Italy, in 2006, four leading specialists present different aspects of quantum transport modeling. It provides an excellent basis for researchers in this field.




Frontiers in Numerical Analysis


Book Description

A set of detailed lecture notes on six topics at the forefront of current research in numerical analysis and applied mathematics. Each set of notes presents a self-contained guide to a current research area. Detailed proofs of key results are provided. The notes start from a level suitable for first year graduate students in applied mathematics, mathematical analysis or numerical analysis, and proceed to current research topics. Current (unsolved) problems are also described and directions for future research are given. This book is also suitable for professional mathematicians.