Wavelet Transform and Complexity


Book Description

Wavelet Transform and Complexity presents high-level content on the fascinating field of wavelet transform and its applications in real-world phenomena. Divided into two parts, Analysis and Real-World Applications, the book describes the application of the wavelet method to several interesting complex systems across various disciplines. The book is designed for students, postdocs, and researchers interested in studying the wavelet method and its applications.




Efficient Algorithms for Discrete Wavelet Transform


Book Description

Due to its inherent time-scale locality characteristics, the discrete wavelet transform (DWT) has received considerable attention in signal/image processing. Wavelet transforms have excellent energy compaction characteristics and can provide perfect reconstruction. The shifting (translation) and scaling (dilation) are unique to wavelets. Orthogonality of wavelets with respect to dilations leads to multigrid representation. As the computation of DWT involves filtering, an efficient filtering process is essential in DWT hardware implementation. In the multistage DWT, coefficients are calculated recursively, and in addition to the wavelet decomposition stage, extra space is required to store the intermediate coefficients. Hence, the overall performance depends significantly on the precision of the intermediate DWT coefficients. This work presents new implementation techniques of DWT, that are efficient in terms of computation, storage, and with better signal-to-noise ratio in the reconstructed signal.




A Wavelet Tour of Signal Processing


Book Description

This book is intended to serve as an invaluable reference for anyone concerned with the application of wavelets to signal processing. It has evolved from material used to teach "wavelet signal processing" courses in electrical engineering departments at Massachusetts Institute of Technology and Tel Aviv University, as well as applied mathematics departments at the Courant Institute of New York University and ÉcolePolytechnique in Paris. - Provides a broad perspective on the principles and applications of transient signal processing with wavelets - Emphasizes intuitive understanding, while providing the mathematical foundations and description of fast algorithms - Numerous examples of real applications to noise removal, deconvolution, audio and image compression, singularity and edge detection, multifractal analysis, and time-varying frequency measurements - Algorithms and numerical examples are implemented in Wavelab, which is a Matlab toolbox freely available over the Internet - Content is accessible on several level of complexity, depending on the individual reader's needs New to the Second Edition - Optical flow calculation and video compression algorithms - Image models with bounded variation functions - Bayes and Minimax theories for signal estimation - 200 pages rewritten and most illustrations redrawn - More problems and topics for a graduate course in wavelet signal processing, in engineering and applied mathematics




The Illustrated Wavelet Transform Handbook


Book Description

The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance provides an overview of the theory and practical applications of wavelet transform methods. The author uses several hundred illustrations, some in color, to convey mathematical concepts and the results of applications. The first chapter presents a brief overview of the wavelet transform, including a short history. The remainder of the book is split into two parts: the first part discusses the mathematics of both discrete and continuous wavelet transforms while the second part deals with applications in a variety of subject areas, such as geophysics, medicine, fluid turbulence, engineering testing, speech and sound analysis, image analysis, and data compression. These application chapters make the reader aware of the similarities that exist in the use of wavelet transform analysis across disciplines. A comprehensive list of more than 700 references provides a valuable resource for further study. The book is designed specifically for the applied reader in science, engineering, medicine, finance, or any other of the growing number of application areas. Newcomers to the subject will find an accessible and clear account of the theory of continuous and discrete wavelet transforms, providing a large number of examples of their use across a wide range of disciplines. Readers already acquainted with wavelets can use the book to broaden their perspective.




Introduction to Wavelets and Wavelet Transforms


Book Description

Advanced undergraduate and beginning graduate students, faculty, researchers and practitioners in signal processing, telecommunications, and computer science, and applied mathematics. It assumes a background of Fourier series and transforms and of linear algebra and matrix methods. This primer presents a well balanced blend of the mathematical theory underlying wavelet techniques and a discussion that gives insight into why wavelets are successful in signal analysis, compression, dection, numerical analysis, and a wide variety of other theoretical and practical applications. It fills a gap in the existing wavelet literature with its unified view of expansions of signals into bases and frames, as well as the use of filter banks as descriptions and algorithms.




Wavelet Radio


Book Description

The first book to provide a detailed discussion of the application of wavelets in wireless communications, this is an invaluable source of information for graduate students, researchers, and telecommunications engineers, managers and strategists. It overviews applications, explains how to design new wavelets and compares wavelet technology with existing OFDM technology. • Addresses the applications and challenges of wavelet technology for a range of wireless communication domains • Aids in the understanding of Wavelet Packet Modulation and compares it with OFDM • Includes tutorials on convex optimisation, spectral factorisation and the design of wavelets • Explains design methods for new wavelet technologies for wireless communications, addressing many challenges, such as peak-to-average power ratio reduction, interference mitigation, reduction of sensitivity to time, frequency and phase offsets, and efficient usage of wireless resources • Describes the application of wavelet radio in spectrum sensing of cognitive radio systems.




An Introduction to Wavelets


Book Description

Wavelet Analysis and its Applications, Volume 1: An Introduction to Wavelets provides an introductory treatise on wavelet analysis with an emphasis on spline-wavelets and time-frequency analysis. This book is divided into seven chapters. Chapter 1 presents a brief overview of the subject, including classification of wavelets, integral wavelet transform for time-frequency analysis, multi-resolution analysis highlighting the important properties of splines, and wavelet algorithms for decomposition and reconstruction of functions. The preliminary material on Fourier analysis and signal theory is covered in Chapters 2 and 3. Chapter 4 covers the introductory study of cardinal splines, while Chapter 5 describes a general approach to the analysis and construction of scaling functions and wavelets. Spline-wavelets are deliberated in Chapter 6. The last chapter is devoted to an investigation of orthogonal wavelets and wavelet packets. This volume serves as a textbook for an introductory one-semester course on "wavelet analysis for upper-division undergraduate or beginning graduate mathematics and engineering students.




Multiresolution Signal Decomposition


Book Description

This book provides an in-depth, integrated, and up-to-date exposition of the topic of signal decomposition techniques. Application areas of these techniques include speech and image processing, machine vision, information engineering, High-Definition Television, and telecommunications. The book will serve as the major reference for those entering the field, instructors teaching some or all of the topics in an advanced graduate course and researchers needing to consult an authoritative source.n The first book to give a unified and coherent exposition of multiresolutional signal decomposition techniquesn Classroom tested textbook clearly describes the commonalities among three key methods-transform coding, and wavelet transformsn Gives comparative performance evaluations of many proposed techniques




Mathematical Theorems


Book Description

The main content of this book is related to construction of analytical solutions of differential equations and systems of mathematical physics, to development of analytical methods for solving boundary value problems for such equations and the study of properties of their solutions. A wide class of equations (elliptic, parabolic, and hyperbolic) is considered here, on the basis of which complex wave processes in biological and physical media can be simulated.The method of generalized functions presented in the book for solving boundary value problems of mathematical physics is universal for constructing solutions of boundary value problems for systems of linear differential equations with constant coefficients of any type. In the last sections of the book, the issues of calculating functions based on Padé approximations, binomial expansions, and fractal representations are considered. The book is intended for specialists in the field of mathematical and theoretical physics, mechanics and biophysics, students of mechanics, mathematics, physics and biology departments of higher educational institutions.




The Illustrated Wavelet Transform Handbook


Book Description

This second edition of The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance has been fully updated and revised to reflect recent developments in the theory and practical applications of wavelet transform methods. The book is designed specifically for the applied reader in science, engineering, medicine and finance. Newcomers to the subject will find an accessible and clear account of the theory of continuous and discrete wavelet transforms, while readers already acquainted with wavelets can use the book to broaden their perspective. One of the many strengths of the book is its use of several hundred illustrations, some in colour, to convey key concepts and their varied practical uses. Chapters exploring these practical applications highlight both the similarities and differences in wavelet transform methods across different disciplines and also provide a comprehensive list of over 1000 references that will serve as a valuable resource for further study. Paul Addison is a Technical Fellow with Medtronic, a global medical technology company. Previously, he was co-founder and CEO of start-up company, CardioDigital Ltd (and later co-founded its US subsidiary, CardioDigital Inc) - a company concerned with the development of novel wavelet-based methods for biosignal analysis. He has a master’s degree in engineering and a PhD in fluid mechanics, both from the University of Glasgow, Scotland (founded 1451). His former academic life as a tenured professor of fluids engineering included the output of a large number of technical papers, covering many aspects of engineering and bioengineering, and two textbooks: Fractals and Chaos: An Illustrated Course and the first edition of The Illustrated Wavelet Transform Handbook. At the time of publication, the author has over 100 issued US patents concerning a wide range of medical device technologies, many of these concerning the wavelet transform analysis of biosignals. He is both a Chartered Engineer and Chartered Physicist.