Wavelets in the Geosciences


Book Description

This book contains state-of-the-art continuous wavelet analysis of one and more dimensional (geophysical) signals. Special attention is given to the reconaissance of specific properties of a signal. It also contains an extension of standard wavelet approximation to the application of so-called second generation wavelets for efficient representation of signals at various scales even on the sphere and more complex geometries. Furthermore, the book discusses the application of harmonic (spherical) wavelets in potential field analysis with emphasis on the gravity field of the Earth. Many examples are given for practical application of these tools; to support the text exercises and demonstrations are available on the Web.




Wavelets and Fractals in Earth System Sciences


Book Description

The subject of wavelet analysis and fractal analysis is fast developing and has drawn a great deal of attention in varied disciplines of science and engineering. Over the past couple of decades, wavelets, multiresolution, and multifractal analyses have been formalized into a thorough mathematical framework and have found a variety of applications with significant impact in several branches of earth system sciences. Wavelets and Fractals in Earth System Sciences highlights the role of advanced data processing techniques in present-day research in various fields of earth system sciences. The book consists of ten chapters, providing a well-balanced blend of information about the role of wavelets, fractals, and multifractal analyses with the latest examples of their application in various research fields. By combining basics with advanced material, this book introduces concepts as needed and serves as an excellent introductory material and also as an advanced reference text for students and researchers.




Encyclopedia of Mathematical Geosciences


Book Description

The Encyclopedia of Mathematical Geosciences is a complete and authoritative reference work. It provides concise explanation on each term that is related to Mathematical Geosciences. Over 300 international scientists, each expert in their specialties, have written around 350 separate articles on different topics of mathematical geosciences including contributions on Artificial Intelligence, Big Data, Compositional Data Analysis, Geomathematics, Geostatistics, Geographical Information Science, Mathematical Morphology, Mathematical Petrology, Multifractals, Multiple Point Statistics, Spatial Data Science, Spatial Statistics, and Stochastic Process Modeling. Each topic incorporates cross-referencing to related articles, and also has its own reference list to lead the reader to essential articles within the published literature. The entries are arranged alphabetically, for easy access, and the subject and author indices are comprehensive and extensive.




Wavelet Transforms and Their Recent Applications in Biology and Geoscience


Book Description

This book reports on recent applications in biology and geoscience. Among them we mention the application of wavelet transforms in the treatment of EEG signals, the dimensionality reduction of the gait recognition framework, the biometric identification and verification. The book also contains applications of the wavelet transforms in the analysis of data collected from sport and breast cancer. The denoting procedure is analyzed within wavelet transform and applied on data coming from real world applications. The book ends with two important applications of the wavelet transforms in geoscience.




Wavelets in the Geosciences


Book Description

This book contains state-of-the-art continuous wavelet analysis of one and more dimensional (geophysical) signals. Special attention is given to the reconaissance of specific properties of a signal. It also contains an extension of standard wavelet approximation to the application of so-called second generation wavelets for efficient representation of signals at various scales even on the sphere and more complex geometries. Furthermore, the book discusses the application of harmonic (spherical) wavelets in potential field analysis with emphasis on the gravity field of the Earth. Many examples are given for practical application of these tools; to support the text exercises and demonstrations are available on the Web.




Wavelet Methods in Statistics with R


Book Description

This book contains information on how to tackle many important problems using a multiscale statistical approach. It focuses on how to use multiscale methods and discusses methodological and applied considerations.




Spherical Functions of Mathematical Geosciences


Book Description

This book is an enlarged second edition of a monograph published in the Springer AGEM2-Series, 2009. It presents, in a consistent and unified overview, a setup of the theory of spherical functions of mathematical (geo-)sciences. The content shows a twofold transition: First, the natural transition from scalar to vectorial and tensorial theory of spherical harmonics is given in a coordinate-free context, based on variants of the addition theorem, Funk-Hecke formulas, and Helmholtz as well as Hardy-Hodge decompositions. Second, the canonical transition from spherical harmonics via zonal (kernel) functions to the Dirac kernel is given in close orientation to an uncertainty principle classifying the space/frequency (momentum) behavior of the functions for purposes of data analysis and (geo-)application. The whole palette of spherical functions is collected in a well-structured form for modeling and simulating the phenomena and processes occurring in the Earth's system. The result is a work which, while reflecting the present state of knowledge in a time-related manner, claims to be of largely timeless significance in (geo-)mathematical research and teaching.




Lectures on Constructive Approximation


Book Description

Lectures on Constructive Approximation: Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball focuses on spherical problems as they occur in the geosciences and medical imaging. It comprises the author’s lectures on classical approximation methods based on orthogonal polynomials and selected modern tools such as splines and wavelets. Methods for approximating functions on the real line are treated first, as they provide the foundations for the methods on the sphere and the ball and are useful for the analysis of time-dependent (spherical) problems. The author then examines the transfer of these spherical methods to problems on the ball, such as the modeling of the Earth’s or the brain’s interior. Specific topics covered include: * the advantages and disadvantages of Fourier, spline, and wavelet methods * theory and numerics of orthogonal polynomials on intervals, spheres, and balls * cubic splines and splines based on reproducing kernels * multiresolution analysis using wavelets and scaling functions This textbook is written for students in mathematics, physics, engineering, and the geosciences who have a basic background in analysis and linear algebra. The work may also be suitable as a self-study resource for researchers in the above-mentioned fields.




Multiscale Potential Theory


Book Description

This self-contained text/reference provides a basic foundation for practitioners, researchers, and students interested in any of the diverse areas of multiscale (geo)potential theory. New mathematical methods are developed enabling the gravitational potential of a planetary body to be modeled using a continuous flow of observations from land or satellite devices. Harmonic wavelets methods are introduced, as well as fast computational schemes and various numerical test examples. Presented are multiscale approaches for numerous geoscientific problems, including geoidal determination, magnetic field reconstruction, deformation analysis, and density variation modelling With exercises at the end of each chapter, the book may be used as a textbook for graduate-level courses in geomathematics, applied mathematics, and geophysics. The work is also an up-to-date reference text for geoscientists, applied mathematicians, and engineers.




Wavelets in Geophysics


Book Description

Applications of wavelet analysis to the geophysical sciences grew from Jean Morlet's work on seismic signals in the 1980s. Used to detect signals against noise, wavelet analysis excels for transients or for spatiallylocalized phenomena. In this fourth volume in the renown WAVELET ANALYSIS AND ITS APPLICATIONS Series, Efi Foufoula-Georgiou and Praveen Kumar begin with a self-contained overview of the nature, power, and scope of wavelet transforms. The eleven originalpapers that follow in this edited treatise show how geophysical researchers are using wavelets to analyze such diverse phenomena as intermittent atmospheric turbulence, seafloor bathymetry, marine and other seismic data, and flow in aquifiers. Wavelets in Geophysics will make informative reading for geophysicists seeking an up-to-date account of how these tools are being used as well as for wavelet researchers searching for ideas for applications, or even new points of departure. Includes twelve original papers written by experts in the geophysical sciences Provides a self-contained overview of the nature, power, and scope of wavelet transforms Presents applications of wavelets to geophysical phenomena such as: The sharp events of seismic data, Long memory processes, such as fluctuation in the level of the Nile, A structure preserving decomposition of turbulence signals