Waves And Wave Forces On Coastal And Ocean Structures


Book Description

This book focuses on: (1) the physics of the fundamental dynamics of fluids and of semi-immersed Lagrangian solid bodies that are responding to wave-induced loads; (2) the scaling of dimensional equations and boundary value problems in order to determine a small dimensionless parameter ε that may be applied to linearize the equations and the boundary value problems so as to obtain a linear system; (3) the replacement of differential and integral calculus with algebraic equations that require only algebraic substitutions instead of differentiations and integrations; and (4) the importance of comparing numerical and analytical computations with data from laboratories and/or nature.







Ocean Wave Dynamics For Coastal And Marine Structures


Book Description

The increase in exploration and exploitation of ocean resources, maritime trade and ocean energy have led to development of new concepts in the study of coastal and marine structures. These developments necessitate comprehensive and in-depth knowledge of ocean wave behavior in the offshore as well as in the nearshore, such as the phenomena of wave generation, propagation, deformation and its effects, which help to enlighten our understanding of its influence on coastal and offshore structures.Ocean Wave Dynamics for Coastal and Marine Structures is a recommended textbook for students and researchers in ocean sciences, engineering and related topics. It offers application of theoretical formulae to practical relevance through problem solving. This book will also be invaluable for professionals in ports, offshore and marine industries as well as consulting companies.




Wave Mechanics and Wave Loads on Marine Structures


Book Description

Wave Mechanics and Wave Loads on Marine Structures provides a new perspective on the calculation of wave forces on ocean structures, unifying the deterministic and probabilistic approaches to wave theory and combining the methods used in field and experimental measurement.Presenting his quasi-determinism (QD) theory and approach of using small-scale field experiments (SSFEs), author Paolo Boccotti simplifies the findings and techniques honed in his ground-breaking work to provide engineers and researchers with practical new methods of analysis. Including numerous worked examples and case studies, Wave Mechanics and Wave Loads on Marine Structures also discusses and provides useful FORTRAN programs, including a subroutine for calculating particle velocity and acceleration in wave groups, and programs for calculating wave loads on several kinds of structures. Solves the conceptual separation of deterministic and stochastic approaches to wave theory seen in other resources through the application of quasi-determinism (QD) theory Combines the distinct experimental activities of field measurements and wave tank experiment using small-scale field experiments (SSFEs) Simplifies and applies the ground-breaking work and techniques of this leading expert in wave theory and marine construction




Wave Forces on Inclined and Vertical Wall Structures


Book Description




Wave Forces on Offshore Structures


Book Description

This book provides a thorough understanding of the interaction of waves and currents with offshore structures.




Advances in Coastal and Ocean Engineering


Book Description

This review volume, the third in the series, presents the latest topics for discussion, which provides invaluable information to coastal and ocean engineers around the world. In the first paper of this volume, entitled ?Internal Solitary Waves?, Grimshaw reviews the basic theory of weakly nonlinear waves in an incompressible density-stratified fluid. The internal solitary waves solutions and effects such as friction, refraction and finite amplitude on internal solitary waves are also discussed. In the second paper entitled ?The 3/2-Power Law for Ocean Wind Waves and Its Applications?, Toba gives a thorough review on the field evidence and physical background of the 3/2-power law and the associated wind-wave energy spectra. Several wind-wave prediction models are also discussed. Goda, in his paper entitled ?Directional Wave Spectrum and Its Engineering Applications?, gives a brief historical overview of the development of directional wave spectrum. He presents several standard formulas for directional spreading function for engineering applications and discusses the effects of directional spreading on nearshore currents and wave forces on coastal structures. In a companion paper entitled ?Analysis of the Directional Wave Spectrum from Field Data?, Hashimoto describes the maximum entropy principle method, Bayesian directional spectrum estimation method and the extended maximum entropy method for estimating directional wave spectrum. Hashimoto also introduces a new developed Doppler-type directional wave meter for field measurements. Finally, in ?Reliability-Based Design of Coastal Structures?, Barcharth introduces a design procedure that makes it possible to optimize a design and/or to design to a specific failure probability level.




Water Wave Mechanics For Engineers And Scientists


Book Description

This book is intended as an introduction to classical water wave theory for the college senior or first year graduate student. The material is self-contained; almost all mathematical and engineering concepts are presented or derived in the text, thus making the book accessible to practicing engineers as well.The book commences with a review of fluid mechanics and basic vector concepts. The formulation and solution of the governing boundary value problem for small amplitude waves are developed and the kinematic and pressure fields for short and long waves are explored. The transformation of waves due to variations in depth and their interactions with structures are derived. Wavemaker theories and the statistics of ocean waves are reviewed. The application of the water particle motions and pressure fields are applied to the calculation of wave forces on small and large objects. Extension of the linear theory results to several nonlinear wave properties is presented. Each chapter concludes with a set of homework problems exercising and sometimes extending the material presented in the chapter. An appendix provides a description of nine experiments which can be performed, with little additional equipment, in most wave tank facilities.




Ocean Wave Dynamics


Book Description

Ocean Wave Dynamics is the most up-to-date book of its kind on the three main processes responsible for the generation and evolution of ocean waves: (i) atmospheric input from the wind, (ii) wave breaking and (iii) nonlinear interactions.Ocean waves are important for many reasons. They are the major environmental impact on in the design of coastal or offshore structures. Ocean waves are also fundamental to the processes of coastal flooding and beach erosion. They will play a major role in storm related coastal flooding which will rise in frequency as a result of sea level rise. Ocean waves are also an important part of the coupled ocean-atmosphere system. They determine the roughness of the ocean surface and hence have an impact on winds, fluxes of energy, gases and heat to the ocean and even the stability of ice sheets.Containing the latest research on ocean waves, it is a valuable resource for an overview of knowledge in this important field.Related Link(s)




Coastal Engineering


Book Description

Ch. 1. Basic Formulation of Sea Waves -- Ch. 2. Wave Interactions with Structures and Hydrodynamic Forces -- Ch. 3. Waves, Wave-Induced Currents and Sediment Transport -- Ch. 4. Structures for Wave Control -- Ch. 5. Structure for Controlling Sediment Movement -- Ch. 6. Marine Structures for Ocean Space Utilization -- Ch. 7. Harbour Tranquility -- Ch. 8. Fishery Structures.