Waves in Dark Matter
Author : O. Ed Wagner
Publisher :
Page : 188 pages
File Size : 28,76 MB
Release : 1995
Category : Biophysics
ISBN : 9780962885327
Author : O. Ed Wagner
Publisher :
Page : 188 pages
File Size : 28,76 MB
Release : 1995
Category : Biophysics
ISBN : 9780962885327
Author : O. Ed Wagner
Publisher :
Page : 113 pages
File Size : 20,19 MB
Release : 1991-10-01
Category : Biophysics
ISBN : 9780962885310
Author : Brian Clegg
Publisher : Icon Books
Page : 121 pages
File Size : 31,79 MB
Release : 2019-08-08
Category : Science
ISBN : 1785785699
'Clear and compact ... It's hard to fault as a brief, easily digestible introduction to some of the biggest questions in the Universe' Giles Sparrow, BBC Four's The Sky at Night , Best astronomy and space books of 2019: 5/5 All the matter and light we can see in the universe makes up a trivial 5 per cent of everything. The rest is hidden. This could be the biggest puzzle that science has ever faced. Since the 1970s, astronomers have been aware that galaxies have far too little matter in them to account for the way they spin around: they should fly apart, but something concealed holds them together. That 'something' is dark matter - invisible material in five times the quantity of the familiar stuff of stars and planets. By the 1990s we also knew that the expansion of the universe was accelerating. Something, named dark energy, is pushing it to expand faster and faster. Across the universe, this requires enough energy that the equivalent mass would be nearly fourteen times greater than all the visible material in existence. Brian Clegg explains this major conundrum in modern science and looks at how scientists are beginning to find solutions to it.
Author : Sabino Matarrese
Publisher : Springer Science & Business Media
Page : 413 pages
File Size : 27,3 MB
Release : 2011-02-10
Category : Science
ISBN : 9048186854
This book brings together reviews from leading international authorities on the developments in the study of dark matter and dark energy, as seen from both their cosmological and particle physics side. Studying the physical and astrophysical properties of the dark components of our Universe is a crucial step towards the ultimate goal of unveiling their nature. The work developed from a doctoral school sponsored by the Italian Society of General Relativity and Gravitation. The book starts with a concise introduction to the standard cosmological model, as well as with a presentation of the theory of linear perturbations around a homogeneous and isotropic background. It covers the particle physics and cosmological aspects of dark matter and (dynamical) dark energy, including a discussion of how modified theories of gravity could provide a possible candidate for dark energy. A detailed presentation is also given of the possible ways of testing the theory in terms of cosmic microwave background, galaxy redshift surveys and weak gravitational lensing observations. Included is a chapter reviewing extensively the direct and indirect methods of detection of the hypothetical dark matter particles. Also included is a self-contained introduction to the techniques and most important results of numerical (e.g. N-body) simulations in cosmology. " This volume will be useful to researchers, PhD and graduate students in Astrophysics, Cosmology Physics and Mathematics, who are interested in cosmology, dark matter and dark energy.
Author : Janna Levin
Publisher : Anchor
Page : 258 pages
File Size : 31,10 MB
Release : 2016-03-29
Category : Science
ISBN : 0307958205
The authoritative story of the headline-making discovery of gravitational waves—by an eminent theoretical astrophysicist and award-winning writer. From the author of How the Universe Got Its Spots and A Madman Dreams of Turing Machines, the epic story of the scientific campaign to record the soundtrack of our universe. Black holes are dark. That is their essence. When black holes collide, they will do so unilluminated. Yet the black hole collision is an event more powerful than any since the origin of the universe. The profusion of energy will emanate as waves in the shape of spacetime: gravitational waves. No telescope will ever record the event; instead, the only evidence would be the sound of spacetime ringing. In 1916, Einstein predicted the existence of gravitational waves, his top priority after he proposed his theory of curved spacetime. One century later, we are recording the first sounds from space, the soundtrack to accompany astronomy’s silent movie. In Black Hole Blues and Other Songs from Outer Space, Janna Levin recounts the fascinating story of the obsessions, the aspirations, and the trials of the scientists who embarked on an arduous, fifty-year endeavor to capture these elusive waves. An experimental ambition that began as an amusing thought experiment, a mad idea, became the object of fixation for the original architects—Rai Weiss, Kip Thorne, and Ron Drever. Striving to make the ambition a reality, the original three gradually accumulated an international team of hundreds. As this book was written, two massive instruments of remarkably delicate sensitivity were brought to advanced capability. As the book draws to a close, five decades after the experimental ambition began, the team races to intercept a wisp of a sound with two colossal machines, hoping to succeed in time for the centenary of Einstein’s most radical idea. Janna Levin’s absorbing account of the surprises, disappointments, achievements, and risks in this unfolding story offers a portrait of modern science that is unlike anything we’ve seen before.
Author : Ken Freeman
Publisher : Springer Science & Business Media
Page : 164 pages
File Size : 29,45 MB
Release : 2006-08-25
Category : Science
ISBN : 0387276181
Written for the educated non-scientist and scientist alike, it spans a variety of scientific disciplines, from observational astronomy to particle physics. Concepts that the reader will encounter along the way are at the cutting edge of scientific research. However the themes are explained in such a way that no prior understanding of science beyond a high school education is necessary.
Author : Larry L. Smarr
Publisher : CUP Archive
Page : 536 pages
File Size : 28,64 MB
Release : 1979-09-27
Category : Science
ISBN : 9780521227780
Author : Govert Schilling
Publisher : Harvard University Press
Page : 377 pages
File Size : 27,3 MB
Release : 2022-01-01
Category : Science
ISBN : 0674248996
An award-winning science journalist details the quest to isolate and understand dark matter--and shows how that search has helped us to understand the universe we inhabit. When you train a telescope on outer space, you can see luminous galaxies, nebulae, stars, and planets. But if you add all that together, it constitutes only 15 percent of the matter in the universe. Despite decades of research, the nature of the remaining 85 percent is unknown. We call it dark matter. In The Elephant in the Universe, Govert Schilling explores the fascinating history of the search for dark matter. Evidence for its existence comes from a wealth of astronomical observations. Theories and computer simulations of the evolution of the universe are also suggestive: they can be reconciled with astronomical measurements only if dark matter is a dominant component of nature. Physicists have devised huge, sensitive instruments to search for dark matter, which may be unlike anything else in the cosmos--some unknown elementary particle. Yet so far dark matter has escaped every experiment. Indeed, dark matter is so elusive that some scientists are beginning to suspect there might be something wrong with our theories about gravity or with the current paradigms of cosmology. Schilling interviews both believers and heretics and paints a colorful picture of the history and current status of dark matter research, with astronomers and physicists alike trying to make sense of theory and observation. Taking a holistic view of dark matter as a problem, an opportunity, and an example of science in action, The Elephant in the Universe is a vivid tale of scientists puzzling their way toward the true nature of the universe.
Author : David H. Lyth
Publisher : Cambridge University Press
Page : 516 pages
File Size : 19,94 MB
Release : 2009-06-11
Category : Science
ISBN : 1139643746
The origin and evolution of the primordial perturbation is the key to understanding structure formation in the earliest stages of the Universe. It carries clues to the types of physical phenomena active in that extreme high-density environment. Through its evolution, generating first the observed cosmic microwave background anisotropies and later the distribution of galaxies and dark matter in the Universe, it probes the properties and dynamics of the present Universe. This graduate-level textbook gives a thorough account of theoretical cosmology and perturbations in the early Universe, describing their observational consequences and showing how to relate such observations to primordial physical processes, particularly cosmological inflation. With ambitious observational programmes complementing ever-increasing sophistication in theoretical modelling, cosmological studies will remain at the cutting edge of astrophysical studies for the foreseeable future.
Author : Andrea Albert
Publisher : Morgan & Claypool Publishers
Page : 82 pages
File Size : 23,41 MB
Release : 2016-09-06
Category : Science
ISBN : 1681742705
Searching for Dark Matter with Cosmic Gamma Rays summarizes the evidence for dark matter and what we can learn about its particle nature using cosmic gamma rays. It has almost been 100 years since Fritz Zwicky first detected hints that most of the matter in the Universe that doesn't directly emit or reflect light. Since then, the observational evidence for dark matter has continued to grow. Dark matter may be a new kind of particle that is governed by physics beyond our Standard Model of particle physics. In many models, dark matter annihilation or decay produces gamma rays. There are a variety of instruments observing the gamma-ray sky from tens of MeV to hundreds of TeV. Some make deep, focused observations of small regions, while others provide coverage of the entire sky. Each experiment offers complementary sensitivity to dark matter searches in a variety of target sizes, locations, and dark matter mass scales. We review results from recent gamma-ray experiments including anomalies some have attributed to dark matter. We also discuss how our gamma-ray observations complement other dark matter searches and the prospects for future experiments.