Waves, Particles and Fields


Book Description

Choice Outstanding Title, September 2020 This book fills a gap in the middle ground between quantum mechanics of a single electron to the concept of a quantum field. In doing so, the book is divided into two parts; the first provides the necessary background to quantum theory extending from Planck’s formulation of black body radiation to Schrodinger’s equation; and the second part explores Dirac’s relativistic electron to quantum fields, finishing with an description of Feynman diagrams and their meaning. Much more than a popular account, yet not too heavy so as to be inaccessible, this book assumes no prior knowledge of quantum physics or field theory and provides the necessary foundations for readers to then progress to more advanced texts on quantum field theory. It will be of interest to undergraduate students in physics and mathematics, in addition to an interested, general audience. Features: Provides an extensive yet accessible background to the concepts Contains numerous, illustrative diagrams Presents in-depth explanations of difficult subjects




Particles, Fields and Forces


Book Description

How can fundamental particles exist as waves in the vacuum? How can such waves have particle properties such as inertia? What is behind the notion of “virtual” particles? Why and how do particles exert forces on one another? Not least: What are forces anyway? These are some of the central questions that have intriguing answers in Quantum Field Theory and the Standard Model of Particle Physics. Unfortunately, these theories are highly mathematical, so that most people - even many scientists - are not able to fully grasp their meaning. This book unravels these theories in a conceptual manner, using more than 180 figures and extensive explanations and will provide the nonspecialist with great insights that are not to be found in the popular science literature.




Particle Or Wave


Book Description

'Particle or Wave' explains the origins and development of modern physical concepts about matter and the controversies surrounding them.




Particles And Quantum Fields


Book Description

This is an introductory book on elementary particles and their interactions. It starts out with many-body Schrödinger theory and second quantization and leads, via its generalization, to relativistic fields of various spins and to gravity. The text begins with the best known quantum field theory so far, the quantum electrodynamics of photon and electrons (QED). It continues by developing the theory of strong interactions between the elementary constituents of matter (quarks). This is possible due to the property called asymptotic freedom. On the way one has to tackle the problem of removing various infinities by renormalization. The divergent sums of infinitely many diagrams are performed with the renormalization group or by variational perturbation theory (VPT). The latter is an outcome of the Feynman-Kleinert variational approach to path integrals discussed in two earlier books of the author, one representing a comprehensive treatise on path integrals, the other dealing with critial phenomena. Unlike ordinary perturbation theory, VPT produces uniformly convergent series which are valid from weak to strong couplings, where they describe critical phenomena.The present book develops the theory of effective actions which allow to treat quantum phenomena with classical formalism. For example, it derives the observed anomalous power laws of strongly interacting theories from an extremum of the action. Their fluctuations are not based on Gaussian distributions, as in the perturbative treatment of quantum field theories, or in asymptotically-free theories, but on deviations from the average which are much larger and which obey power-like distributions.Exactly solvable models are discussed and their physical properties are compared with those derived from general methods. In the last chapter we discuss the problem of quantizing the classical theory of gravity.




Sidney Coleman's Lectures on Relativity


Book Description

Sidney Coleman (1937–2007) earned his doctorate at Caltech under Murray Gell-Mann. Before completing his thesis, he was hired by Harvard and remained there his entire career. A celebrated particle theorist, he is perhaps best known for his brilliant lectures, given at Harvard and in a series of summer school courses at Erice, Sicily. Three times in the 1960s he taught a graduate course on Special and General Relativity; this book is based on lecture notes taken by three of his students and compiled by the Editors.




Tales of the Quantum


Book Description

This is a book about the quanta that make up our universe--the highly unified bundles of energy of which everything is made. It explains wave-particle duality, randomness, quantum states, non-locality, Schrodinger's cat, quantum jumps, and more, in everyday language for non-scientists and scientists who wish to fathom science's most fundamental theory.




University Physics


Book Description

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.




Quantum Field Theory Of Point Particles And Strings


Book Description

First Published in 2018. The emphasis of the book is calculational, and most computations are presented in step-by-step detail. The book is unique in that it develops all three representations of quantum field theory (operator, functional Schr dinger, and path integral) for point particles and strings. In many cases, identical results are worked out in each representation to emphasize the representation-independent structures of quantum field theory




Quantum Physics Workbook For Dummies


Book Description

Hands-on practice in solving quantum physics problems Quantum Physics is the study of the behavior of matter and energy at the molecular, atomic, nuclear, and even smaller microscopic levels. Like the other titles in our For Dummies Workbook series, Quantum Physics Workbook For Dummies allows you to hone your skills at solving the difficult and often confusing equations you encounter in this subject. Explains equations in easy-to-understand terms Harmonic Oscillator Operations, Angular Momentum, Spin, Scattering Theory Using a proven practice-and-review approach, Quantum Physics Workbook For Dummies is all you need to get up to speed in problem solving!




A Prelude to Quantum Field Theory


Book Description

"A Prelude to Quantum Field Theory offers a short introduction to quantum field theory (QFT), a powerful framework for understanding particle behavior that is an essential tool across many subfields of physics. A subject that is typically taught at the graduate level in most physics departments, quantum field theory is a unification of standard quantum theories and special relativity, which depicts all particles as "excitations" that arise in underlying fields. It extends quantum mechanics, the modern theory of one or few particles, in a way that is useful for the analysis of many-particle systems in the real world. As it requires a different style of thinking from quantum mechanics, which is typically the undergraduate physics student's first encounter with the quantum world, many beginners struggle with the transition to quantum field theory, especially when working with traditional textbooks. Existing books on the subject often tend to be large, sophisticated, and complete; and an overwhelming wealth of information and technical detail makes it difficult for the novice to discern what is most important. This book is a concise, friendly entrée for QFT-beginners, guiding the reader from the style of quantum mechanical thinking to that of QFT, and distilling the key ideas without a welter of unnecessary detail. In contrast with standard texts, which are predominantly particle physics-centric, this book is designed to be "subfield-neutral" - usable by students of any background and interest, and easily adaptable in a course setting according to instructors' preferences. The authors' conviction is that QFT is a core element of physics that should be understood by all PhD physicists-but that developing an appreciation for it does not require digesting a large, encyclopedic volume"--