Empirical Processes with Applications to Statistics


Book Description

Originally published in 1986, this valuable reference provides a detailed treatment of limit theorems and inequalities for empirical processes of real-valued random variables; applications of the theory to censored data, spacings, rank statistics, quantiles, and many functionals of empirical processes, including a treatment of bootstrap methods; and a summary of inequalities that are useful for proving limit theorems. At the end of the Errata section, the authors have supplied references to solutions for 11 of the 19 Open Questions provided in the book's original edition. Audience: researchers in statistical theory, probability theory, biostatistics, econometrics, and computer science.




Introduction to Empirical Processes and Semiparametric Inference


Book Description

Kosorok’s brilliant text provides a self-contained introduction to empirical processes and semiparametric inference. These powerful research techniques are surprisingly useful for developing methods of statistical inference for complex models and in understanding the properties of such methods. This is an authoritative text that covers all the bases, and also a friendly and gradual introduction to the area. The book can be used as research reference and textbook.




Weak Convergence and Empirical Processes


Book Description

This book explores weak convergence theory and empirical processes and their applications to many applications in statistics. Part one reviews stochastic convergence in its various forms. Part two offers the theory of empirical processes in a form accessible to statisticians and probabilists. Part three covers a range of topics demonstrating the applicability of the theory to key questions such as measures of goodness of fit and the bootstrap.




Weighted Empirical Processes in Dynamic Nonlinear Models


Book Description

This book presents a unified approach for obtaining the limiting distributions of minimum distance. It discusses classes of goodness-of-t tests for fitting an error distribution in some of these models and/or fitting a regression-autoregressive function without assuming the knowledge of the error distribution. The main tool is the asymptotic equi-continuity of certain basic weighted residual empirical processes in the uniform and L2 metrics.




Convergence of Stochastic Processes


Book Description

Functionals on stochastic processes; Uniform convergence of empirical measures; Convergence in distribution in euclidean spaces; Convergence in distribution in metric spaces; The uniform metric on space of cadlag functions; The skorohod metric on D [0, oo); Central limit teorems; Martingales.




A Weak Convergence Approach to the Theory of Large Deviations


Book Description

Applies the well-developed tools of the theory of weak convergenceof probability measures to large deviation analysis--a consistentnew approach The theory of large deviations, one of the most dynamic topics inprobability today, studies rare events in stochastic systems. Thenonlinear nature of the theory contributes both to its richness anddifficulty. This innovative text demonstrates how to employ thewell-established linear techniques of weak convergence theory toprove large deviation results. Beginning with a step-by-stepdevelopment of the approach, the book skillfully guides readersthrough models of increasing complexity covering a wide variety ofrandom variable-level and process-level problems. Representationformulas for large deviation-type expectations are a key tool andare developed systematically for discrete-time problems. Accessible to anyone who has a knowledge of measure theory andmeasure-theoretic probability, A Weak Convergence Approach to theTheory of Large Deviations is important reading for both studentsand researchers.




Principles of Nonparametric Learning


Book Description

This volume provides a systematic in-depth analysis of nonparametric learning. It covers the theoretical limits and the asymptotical optimal algorithms and estimates, such as pattern recognition, nonparametric regression estimation, universal prediction, vector quantization, distribution and density estimation, and genetic programming.




Empirical Processes


Book Description




Weak Convergence and Empirical Processes


Book Description

This book provides an account of weak convergence theory, empirical processes, and their application to a wide variety of problems in statistics. The first part of the book presents a thorough treatment of stochastic convergence in its various forms. Part 2 brings together the theory of empirical processes in a form accessible to statisticians and probabilists. In Part 3, the authors cover a range of applications in statistics including rates of convergence of estimators; limit theorems for M− and Z−estimators; the bootstrap; the functional delta-method and semiparametric estimation. Most of the chapters conclude with “problems and complements.” Some of these are exercises to help the reader’s understanding of the material, whereas others are intended to supplement the text. This second edition includes many of the new developments in the field since publication of the first edition in 1996: Glivenko-Cantelli preservation theorems; new bounds on expectations of suprema of empirical processes; new bounds on covering numbers for various function classes; generic chaining; definitive versions of concentration bounds; and new applications in statistics including penalized M-estimation, the lasso, classification, and support vector machines. The approximately 200 additional pages also round out classical subjects, including chapters on weak convergence in Skorokhod space, on stable convergence, and on processes based on pseudo-observations.




Analysis and Approximation of Rare Events


Book Description

This book presents broadly applicable methods for the large deviation and moderate deviation analysis of discrete and continuous time stochastic systems. A feature of the book is the systematic use of variational representations for quantities of interest such as normalized logarithms of probabilities and expected values. By characterizing a large deviation principle in terms of Laplace asymptotics, one converts the proof of large deviation limits into the convergence of variational representations. These features are illustrated though their application to a broad range of discrete and continuous time models, including stochastic partial differential equations, processes with discontinuous statistics, occupancy models, and many others. The tools used in the large deviation analysis also turn out to be useful in understanding Monte Carlo schemes for the numerical approximation of the same probabilities and expected values. This connection is illustrated through the design and analysis of importance sampling and splitting schemes for rare event estimation. The book assumes a solid background in weak convergence of probability measures and stochastic analysis, and is suitable for advanced graduate students, postdocs and researchers.