Welding Metallurgy and Weldability of Nickel-Base Alloys


Book Description

The most up-to-date coverage of welding metallurgy aspects and weldability issues associated with Ni-base alloys Welding Metallurgy and Weldability of Nickel-Base Alloys describes the fundamental metallurgical principles that control the microstructure and properties of welded Ni-base alloys. It serves as a practical how-to guide that enables engineers to select the proper alloys, filler metals, heat treatments, and welding conditions to ensure that failures are avoided during fabrication and service. Chapter coverage includes: Alloying additions, phase diagrams, and phase stability Solid-solution strengthened Ni-base alloys Precipitation strengthened Ni-base alloys Oxide dispersion strengthened alloys and nickel aluminides Repair welding of Ni-base alloys Dissimilar welding Weldability testing High-chromium alloys used in nuclear power applications With its excellent balance between the fundamentals and practical problem solving, the book serves as an ideal reference for scientists, engineers, and technicians, as well as a textbook for undergraduate and graduate courses in welding metallurgy.




Welding Metallurgy and Weldability of Nickel-Base Alloys


Book Description

The most up-to-date coverage of welding metallurgy aspects and weldability issues associated with Ni-base alloys Welding Metallurgy and Weldability of Nickel-Base Alloys describes the fundamental metallurgical principles that control the microstructure and properties of welded Ni-base alloys. It serves as a practical how-to guide that enables engineers to select the proper alloys, filler metals, heat treatments, and welding conditions to ensure that failures are avoided during fabrication and service. Chapter coverage includes: Alloying additions, phase diagrams, and phase stability Solid-solution strengthened Ni-base alloys Precipitation strengthened Ni-base alloys Oxide dispersion strengthened alloys and nickel aluminides Repair welding of Ni-base alloys Dissimilar welding Weldability testing High-chromium alloys used in nuclear power applications With its excellent balance between the fundamentals and practical problem solving, the book serves as an ideal reference for scientists, engineers, and technicians, as well as a textbook for undergraduate and graduate courses in welding metallurgy.




Welding Metallurgy and Weldability


Book Description

Describes the weldability aspects of structural materials used in a wide variety of engineering structures, including steels, stainless steels, Ni-base alloys, and Al-base alloys Welding Metallurgy and Weldability describes weld failure mechanisms associated with either fabrication or service, and failure mechanisms related to microstructure of the weldment. Weldability issues are divided into fabrication and service related failures; early chapters address hot cracking, warm (solid-state) cracking, and cold cracking that occur during initial fabrication, or repair. Guidance on failure analysis is also provided, along with examples of SEM fractography that will aid in determining failure mechanisms. Welding Metallurgy and Weldability examines a number of weldability testing techniques that can be used to quantify susceptibility to various forms of weld cracking. Describes the mechanisms of weldability along with methods to improve weldability Includes an introduction to weldability testing and techniques, including strain-to-fracture and Varestraint tests Chapters are illustrated with practical examples based on 30 plus years of experience in the field Illustrating the weldability aspects of structural materials used in a wide variety of engineering structures, Welding Metallurgy and Weldability provides engineers and students with the information needed to understand the basic concepts of welding metallurgy and to interpret the failures in welded components.




Welding Metallurgy


Book Description

Updated to include new technological advancements in welding Uses illustrations and diagrams to explain metallurgical phenomena Features exercises and examples An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.




WELDING METALLURGY AND WELDABILITY OF STAINLESS STEELS


Book Description

Market_Desc: · Professional engineers, technicians, scientists, etc. working in industries where stainless steels are used for construction. This includes the power generation, energy, petrochemical, dairy, medical, electronic, defense, and construction industries.· Advanced undergraduate and graduate level students. Special Features: · Emphasizes solid fundamental underpinnings of the metallurgical principles that govern microstructure evolution and property develpment in welded stainless steels.· Presents many practical examples that demonstrate the application of fundamental metallurgical principles.· Greatly expands and updates what is currently available in other texts and handbooks in the subject matter. About The Book: This book describes the fundamental metallurgical principles that control microstructure and properties of welded stainless steels. It also serves as a practical how to guide that will allow engineers to select the proper alloys, filler metals, heat treatments, and welding conditions to insure that failures are avoided during fabrication and service. This book provides state of the art information on the topic and greatly expands and update what is currently available in other texts and handbooks.




Welding Metallurgy of Stainless Steels


Book Description

When considering the operational performance of stainless steel weldments the most important points to consider are corrosion resistance, weld metal mechanical properties and the integrity ofthe weldedjoint. Mechanical and corrosion resistance properties are greatly influenced by the metallurgical processes that occur during welding or during heat treatment of welded components. This book is aimed, there fore, at providing information on the metallurgical problems that may be encountered during stainless steel welding. In this way we aim to help overcome a certain degree of insecurity that is often encountered in welding shops engaged in the welding of stainless steels and is often the cause of welding problems which may in some instances lead to the premature failure of the welded component. The metallurgical processes that occur during the welding of stainless steel are of a highly intricate nature. The present book focuses in particular on the signif icance of constitution diagrams, on the processes occurring during the solidification of weld metal and on the recrystallization and precipitation phenomena which take place in the area of the welds. There are specific chapters covering the hot cracking resistance during welding and the practical welding of a number of different stainless steel grades. In addition, recommendations are given as to the most suitable procedures to be followed in order to obtain maximum corrosion resistance and mechanical properties from the weldments.




Weld Integrity and Performance


Book Description

Key articles from over 10 separate ASM publications are brought together as a practical reference on weld integrity crack prevention. This book thoroughly covers the essentials of weld solidification and cracking, weldability and material selection, process control and heat treatment, failure analysis, and fatigue and fracture mechanics weldments. Contents also include an appendix for quick reference of tabular data on weldability of alloys, process selection, recommended interpass and heat treatment temperatures, and qualification codes and standards.




Nickel Alloys


Book Description

This book evaluates the latest developments in nickel alloys and high-alloy special stainless steels by material number, price, wear rate in corrosive media, mechanical and metallurgical characteristics, weldability, and resistance to pitting and crevice corrosion. Nickel Alloys is at the forefront in the search for the most economic solutions to c




Alloying


Book Description

Alloying: Understanding the Basics is a comprehensive guide to the influence of alloy additions on mechanical properties, physical properties, corrosion and chemical behavior, and processing and manufacturing characteristics. The coverage considers "alloying" to include any addition of an element or compound that interacts with a base metal to influence properties. Thus, the book addresses the beneficial effects of major alloy additions, inoculants, dopants, grain refiners, and other elements that have been deliberately added to improve performance, as well the detrimental effects of minor elements or residual (tramp) elements included in charge materials or that result from improper melting or refining techniques. The content is presented in a concise, user-friendly format. Numerous figures and tables are provided. The coverage has been weighted to provided the most detailed information on the most industrially important materials.




Metallurgy for the Non-Metallurgist, Second Edition


Book Description

The completely revised Second Edition of Metallurgy for the Non-Metallurgist provides a solid understanding of the basic principles and current practices of metallurgy. This major new edition is for anyone who uses, makes, buys or tests metal products. For both beginners and others seeking a basic refresher, the new Second Edition of the popular Metallurgy for the Non-Metallurgist gives an all-new modern view on the basic principles and practices of metallurgy. This new edition is extensively updated with broader coverage of topics, new and improved illustrations, and more explanation of basic concepts. Why are cast irons so suitable for casting? Do some nonferrous alloys respond to heat treatment like steels? Why is corrosion so pernicious? These are questions that can be answered in this updated reference with many new illustrations, examples, and descriptions of basic metallurgy.