What a Waste 2.0


Book Description

Solid waste management affects every person in the world. By 2050, the world is expected to increase waste generation by 70 percent, from 2.01 billion tonnes of waste in 2016 to 3.40 billion tonnes of waste annually. Individuals and governments make decisions about consumption and waste management that affect the daily health, productivity, and cleanliness of communities. Poorly managed waste is contaminating the world’s oceans, clogging drains and causing flooding, transmitting diseases, increasing respiratory problems, harming animals that consume waste unknowingly, and affecting economic development. Unmanaged and improperly managed waste from decades of economic growth requires urgent action at all levels of society. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 aggregates extensive solid aste data at the national and urban levels. It estimates and projects waste generation to 2030 and 2050. Beyond the core data metrics from waste generation to disposal, the report provides information on waste management costs, revenues, and tariffs; special wastes; regulations; public communication; administrative and operational models; and the informal sector. Solid waste management accounts for approximately 20 percent of municipal budgets in low-income countries and 10 percent of municipal budgets in middle-income countries, on average. Waste management is often under the jurisdiction of local authorities facing competing priorities and limited resources and capacities in planning, contract management, and operational monitoring. These factors make sustainable waste management a complicated proposition; most low- and middle-income countries, and their respective cities, are struggling to address these challenges. Waste management data are critical to creating policy and planning for local contexts. Understanding how much waste is generated—especially with rapid urbanization and population growth—as well as the types of waste generated helps local governments to select appropriate management methods and plan for future demand. It allows governments to design a system with a suitable number of vehicles, establish efficient routes, set targets for diversion of waste, track progress, and adapt as consumption patterns change. With accurate data, governments can realistically allocate resources, assess relevant technologies, and consider strategic partners for service provision, such as the private sector or nongovernmental organizations. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 provides the most up-to-date information available to empower citizens and governments around the world to effectively address the pressing global crisis of waste. Additional information is available at http://www.worldbank.org/what-a-waste.




Waste


Book Description

Waste: A Handbook for Management gives the broadest, most complete coverage of waste in our society. The book examines a wide range of waste streams, including: - Household waste (compostable material, paper, glass, textiles, household chemicals, plastic, water, and e-waste) - Industrial waste (metals, building materials, tires, medical, batteries, hazardous mining, and nuclear) - Societal waste (ocean, military, and space) - The future of landfills and incinerators Covering all the issues related to waste in one volume helps lead to comparisons, synergistic solutions, and a more informed society. In addition, the book offers the best ways of managing waste problems through recycling, incineration, landfill and other processes. - Co-author Daniel Vallero interviewed on NBC's Today show for a segment on recycling - Scientific and non-biased overviews will assist scientists, technicians, engineers, and government leaders - Covers all main types of waste, including household, industrial, and societal - Strong focus on management and recycling provides solutions




Food Waste to Valuable Resources


Book Description

Food Waste to Valuable Resources: Applications and Management compiles current information pertaining to food waste, placing particular emphasis on the themes of food waste management, biorefineries, valuable specialty products and technoeconomic analysis. Following its introduction, this book explores new valuable resource technologies, the bioeconomy, the technoeconomical evaluation of food-waste-based biorefineries, and the policies and regulations related to a food-waste-based economy. It is an ideal reference for researchers and industry professionals working in the areas of food waste valorization, food science and technology, food producers, policymakers and NGOs, environmental technologists, environmental engineers, and students studying environmental engineering, food science, and more. - Presents recent advances, trends and challenges related to food waste valorization - Contains invaluable knowledge on of food waste management, biorefineries, valuable specialty products and technoeconomic analysis - Highlights modern advances and applications of food waste bioresources in various products' recovery




Sustainable Food Waste-to-Energy Systems


Book Description

Sustainable Food Waste-to-Energy Systems assesses the utilization of food waste in sustainable energy conversion systems. It explores all sources of waste generated in the food supply chain (downstream from agriculture), with coverage of industrial, commercial, institutional and residential sources. It provides a detailed analysis of the conventional pathways for food waste disposal and utilization, including composting, incineration, landfilling and wastewater treatment. Next, users will find valuable sections on the chemical, biochemical and thermochemical waste-to-energy conversion processes applicable for food waste and an assessment of commercially available sustainable food waste-to-energy conversion technologies. Sustainability aspects, including consideration of environmental, economic and social impacts are also explored. The book concludes with an analysis of how deploying waste-to-energy systems is dependent on cross-cutting research methods, including geographical information systems and big data. It is a useful resource for professionals working in waste-to-energy technologies, as well as those in the food industry and food waste management sector planning and implementing these systems, but is also ideal for researchers, graduate students, energy policymakers and energy analysts interested in the most recent advances in the field. - Provides guidance on how specific food waste characteristics drive possible waste-to-energy conversion processes - Presents methodologies for selecting among different waste-to-energy options, based on waste volumes, distribution and properties, local energy demand (electrical/thermal/steam), opportunities for industrial symbiosis, regulations and incentives and social acceptance, etc. - Contains tools to assess potential environmental and economic performance of deployed systems - Links to publicly available resources on food waste data for energy conversion




Waste Management Practices


Book Description

A practical guide for the identification and management of a range of hazardous wastes, Waste Management Practices: Municipal, Hazardous, and Industrial integrates technical information including chemistry, microbiology, and engineering, with current regulations. Emphasizing basic environmental science and related technical fields, the book is an i




Waste-to-Energy


Book Description

This book covers in detail programs and technologies for converting traditionally landfilled solid wastes into energy through waste-to-energy projects - Modern Waste-to-Energy plants are being built around the world to reduce the levels of solid waste going into landfill sites and contribute to renewable energy and carbon reduction targets. The latest technologies have also reduced the pollution levels seen from early waste incineration plants by over 99% - With case studies from around the world, Rogoff and Screve provide an insight into the different approaches taken to the planning and implementation of WTE - The second edition includes coverage of the latest technologies and practical engineering challenges as well as an exploration of the economic and regulatory context for the development of WTE




Source Reduction and Waste Minimization


Book Description

Source Reduction and Waste Minimization is the second volume in the series Advanced Zero Waste Tools: Present and Emerging Waste Management Practices. It addresses processes and practices for waste minimization to support efforts to promote a more sustainable society and provide readers with a proper understanding of the major mechanisms followed for waste minimization across fields. Despite being one of the major challenges mankind is facing to establish a sustainable society, waste minimization techniques are not broadly adopted and an organized collection of these techniques with corresponding evidence of results is not available currently. This book covers numerous mechanisms supported by scientific evidence and case studies, as well as in-depth flowcharts and process diagrams to allow for readers to adopt these processes. Summarizing the present and emerging zero waste tools on the scale of both experimental and theoretical models, Advanced Zero Waste Tools is the first step toward understanding the state-of-the-art practices in making the zero-waste goal a reality. In addition to environmental and engineering principles, it also covers economic, toxicologic, and regulatory issues, making it an important resource for researchers, engineers, and policymakers working toward environmental sustainability. - Uses fundamental, interdisciplinary, and state-of-the-art coverage of zero waste research to provide an integrated approach to tools, methodology, and indicators for waste minimization - Covers current challenges, design and manufacturing technology, and sustainability applications - Includes up-to-date references and web resources at the end of each chapter, as well as a webpage dedicated to providing supplementary information




Integrated Solid Waste Management: A Lifecycle Inventory


Book Description

Life is often considered to be a journey. The lifecycle of waste can similarly be considered to be a journey from the cradle (when an item becomes valueless and, usually, is placed in the dustbin) to the grave (when value is restored by creating usable material or energy; or the waste is transformed into emissions to water or air, or into inert material placed in a landfill). This preface provides a route map for the journey the reader of this book will undertake. Who? Who are the intended readers of this book? Waste managers (whether in public service or private companies) will find a holistic approach for improving the environmental quality and the economic cost of managing waste. The book contains general principles based on cutting edge experience being developed across Europe. Detailed data and a computer model will enable operations managers to develop data-based improvements to their systems. Producers oj waste will be better able to understand how their actions can influence the operation of environmentally improved waste management systems. Designers oj products and packages will be better able to understand how their design criteria can improve the compatibility of their product or package with developing, environmentally improved waste management systems. Waste data specialists (whether in laboratories, consultancies or environ mental managers of waste facilities) will see how the scope, quantity and quality of their data can be improved to help their colleagues design more effective waste management systems.




Plastic Waste and Recycling


Book Description

Plastic Waste and Recycling: Environmental Impact, Societal Issues, Prevention, and Solutions begins with an introduction to the different types of plastic materials, their uses, and the concepts of reduce, reuse and recycle before examining plastic types, chemistry and degradation patterns that are organized by non-degradable plastic, degradable and biodegradable plastics, biopolymers and bioplastics. Other sections cover current challenges relating to plastic waste, explain the sources of waste and their routes into the environment, and provide systematic coverage of plastic waste treatment methods, including mechanical processing, monomerization, blast furnace feedstocks, gasification, thermal recycling, and conversion to fuel. This is an essential guide for anyone involved in plastic waste or recycling, including researchers and advanced students across plastics engineering, polymer science, polymer chemistry, environmental science, and sustainable materials. - Presents actionable solutions for reducing plastic waste, with a focus on the concepts of collection, re-use, recycling and replacement - Considers major societal and environmental issues, providing the reader with a broader understanding and supporting effective implementation - Includes detailed case studies from across the globe, offering unique insights into different solutions and approaches




360-Degree Waste Management, Volume 2


Book Description

360 Degree Waste Management, Volume Two: Biomedical, Pharmaceutical, and Industrial Waste and Remediation presents an interdisciplinary approach to understanding various types of biomedical, pharmaceutical, and industrial waste, including their origin, management, recycling, disposal, effects on ecosystems, and social and economic impacts. By applying the concepts of sustainable, affordable and integrated approaches for the improvement of waste management, the book confronts social, economic and environmental challenges. Thus, researchers, waste managers and environmental engineers will find critical information to identify long-term answers to problems of waste management that require complex understanding and analysis. Presenting key concepts in the management of biomedical and industrial waste, Volume Two of this two volume series includes aspects on microbiology of waste management, advanced treatment processes, environmental impacts, technological developments, economics of waste management and future implications. Provides a critical assessment of economic, social and environmental challenges due to solid wastes, highlighting sustainable management approach Describes various factors to be considered while developing waste management strategies, including techniques for reuse, reduce, recycle or recovery of solid waste and management of other wastes, such as wastes from pharmaceuticals, aluminum industry, heavy metal, and other metallurgical waste Addresses contemporary issues such as the transformation of waste into value-added products Presents an interdisciplinary approach to the management of various types of biomedical, pharmaceutical and industrial waste