Stable Isotope Probing and Related Technologies


Book Description

The ideal starting point for investigating, developing, and implementing stable isotope technologies. • Guides researchers through basic, tested, and proven protocols including DNA, RNA, protein, and phospholipid fatty acid (PLFA) SIP, from concept and history through detailed methodology, troubleshooting, and interpretation to optimal and future uses. • Explores important and emerging applications of SIP in environmental microbiology, ranging from bioremediation and gene mining to carbon tracking and gut microflora function. • Examines explorations of further elegant isotope labeling technologies such as Raman-FISH, NanoSIMS, and isotope arrays. • Serves as a valuable resource for environmental microbiology students and researchers and genomics, biotechnology, and medical microbiology professionals.




Phytoremediation and Rhizoremediation


Book Description

This volume represents an excellent description of the hottest topics in the field of phyto- and rhizoremediation. The book shows especially the importance of cooperation between plant and microorganisms, there is practically no phytoremediation without rhizoremediation. Newest approaches based on methods of molecular biology and genetic engineering are described, as well as plant science achievements.




Microbial Metabolism of Xenobiotic Compounds


Book Description

Xenobiotic compounds including pesticides, nitrophenols, pyridine, polycyclic aromatic compounds and polychlorinated biphenyls are widely spread in environment due to anthropogenic activities. Most of them are highly toxic to living beings due to their mutagenic and carcinogenic properties. Therefore, the removal of these compounds from environment is an essential step for environmental sustainability. Microbial remediation has emerged as an effective technology for degradation of these xenobiotic compounds as microorganisms have unique ability to utilize these compounds as their sole source of carbon and energy. The primary goal of this book is to provide detailed information of microbial degradation of many xenobiotic compounds in various microorganisms.




Handbook of Molecular Microbial Ecology I


Book Description

The premiere two-volume reference on revelations from studying complex microbial communities in many distinct habitats Metagenomics is an emerging field that has changed the way microbiologists study microorganisms. It involves the genomic analysis of microorganisms by extraction and cloning of DNA from a group of microorganisms, or the direct use of the purified DNA or RNA for sequencing, which allows scientists to bypass the usual protocol of isolating and culturing individual microbial species. This method is now used in laboratories across the globe to study microorganism diversity and for isolating novel medical and industrial compounds. Handbook of Molecular Microbial Ecology is the first comprehensive two-volume reference to cover unculturable microorganisms in a large variety of habitats, which could not previously have been analyzed without metagenomic methodology. It features review articles as well as a large number of case studies, based largely on original publications and written by international experts. This first volume, Metagenomics and Complementary Approaches, covers such topics as: Background information on DNA reassociation and use of 16 rRNA and other DNA fingerprinting approaches Species designation in microbiology Metagenomics: Introduction to the basic tools with examples Consortia and databases Bioinformatics Computer-assisted analysis Complementary approaches—microarrays, metatranscriptomics, metaproteomics, metabolomics, and single cell analysis A special feature of this volume is the highlighting of the databases and computer programs used in each study; they are listed along with their sites in order to facilitate the computer-assisted analysis of the vast amount of data generated by metagenomic studies. Handbook of Molecular Microbial Ecology I is an invaluable reference for researchers in metagenomics, microbiology, and environmental microbiology; those working on the Human Microbiome Project; microbial geneticists; molecular microbial ecologists; and professionals in molecular microbiology and bioinformatics.




Advances in Microbial Physiology


Book Description

Advances in Microbial Physiology is one of the most successful and prestigious series from Academic Press, an imprint of Elsevier. It publishes topical and important reviews, interpreting physiology to include all material that contributes to our understanding of how microorganisms and their component parts work. First published in 1967, the editors have always striven to interpret microbial physiology in the broadest context and have never restricted the contents to "traditional views of whole cell physiology. Now edited by Professor Robert Poole, University of Sheffield, Advances in Microbial Physiology continues to be an influential and very well reviewed series.




Stable Isotope Probing


Book Description

This book provides definitive methods to perform stable isotope probing (SIP) experiments, covering a wide spectrum of stable isotope techniques used in microbial ecology, such as methods to target and analyze labeled DNA, rRNA, mRNA, protein, and PLFA. Protocols to study stable isotope fractionation by microbial pathways, the analysis of labeled communities with Raman microscopy, Chip-SIM, as well as quantitative SIP (qSIP) and high-resolution SIP (HR-SIP) are also featured. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Stable Isotope Probing: Methods and Protocols provides readers with up-to-date protocols ranging from basic to the most sophisticated applications of SIP and will benefit anyone pursuing this exciting area of study.




Principles of Plant-Microbe Interactions


Book Description

The use of microbial plant protection products is growing and their importance will strongly increase due to political and public pressure. World population is growing and the amount of food needed by 2050 will be double of what is produced now whereas the area of agricultural land is decreasing. We must increase crop yield in a sustainable way. Chemical plant growth promoters must be replaced by microbiological products. Also here, the use of microbial products is growing and their importance will strongly increase. A growing area of agricultural land is salinated. Global warming will increase this process. Plants growth is inhibited by salt or even made impossible and farmers tend to disuse the most salinated lands. Microbes have been very successfully used to alleviate salt stress of plants. Chemical pollution of land can make plant growth difficult and crops grown are often polluted and not suitable for consumption. Microbes have been used to degrade these chemical pollutants.




Micro-organisms and Earth Systems


Book Description

There is growing awareness that important environmental transformations are catalysed, mediated and influenced by microorganisms, and geomicrobiology can be defined as the influence of microorganisms on geologic processes. This is probably the most rapidly growing area of microbiology at present, combining environmental and molecular microbiology together with significant areas of mineralogy, geochemistry and hydrology. This volume focuses on the function of microorganisms in the environment and their influence on 'global' processes. It will include state-of-the art approaches to visualisation, culture and identification, community interactions and gene transfer, and diversity studies in relation to key processes. This overview for researchers and graduate students will represent environmental microbiology in its broadest sense and help to promote exciting collaborations between microbiologists and those in complementary physical and chemical disciplines.




In Situ Bioremediation


Book Description

In situ bioremediationâ€"the use of microorganisms for on-site removal of contaminantsâ€"is potentially cheaper, faster, and safer than conventional cleanup methods. But in situ bioremediation is also clouded in uncertainty, controversy, and mistrust. This volume from the National Research Council provides direction for decisionmakers and offers detailed and readable explanations of: the processes involved in in situ bioremediation, circumstances in which it is best used, and methods of measurement, field testing, and modeling to evaluate the results of bioremediation projects. Bioremediation experts representing academic research, field practice, regulation, and industry provide accessible information and case examples; they explore how in situ bioremediation works, how it has developed since its first commercial use in 1972, and what research and education efforts are recommended for the future. The volume includes a series of perspective papers. The book will be immediately useful to policymakers, regulators, bioremediation practitioners and purchasers, environmental groups, concerned citizens, faculty, and students.




Nondigestible Carbohydrates and Digestive Health


Book Description

Featuring authors from academia as well as industry, this book provides a broad view of carbohydrates influencing digestive health. Part 1 is a general overview of carbohydrates that function as prebiotics or fermentable carbohydrates. Part 2 is a more in depth examination of specific carbohydrates for digestive health and applications. This book provides an in-depth review and thorough foundation for food scientists, product developers and nutrition scientists seeking to understand the digestive health implications of carbohydrates. Key features: Analyzes the most active fields of research currently performed on nondigestible carbohydrates Focuses on the growing opportunity to deliver digestive health benefits through fibers and other novel carbohydrates Authors include highly recognized researchers from academe and industry experts Explores new possibilities in prebiotics and fermentable carbohydrates