What Fuels Transformers in Computer Vision? Unraveling ViT's Advantages


Book Description

Master's Thesis from the year 2022 in the subject Computer Sciences - Artificial Intelligence, grade: 7.50, Universidad de Alcalá, course: Artificial Intelligence and Deep Learning, language: English, abstract: Vision Transformers (ViT) are neural model architectures that compete and exceed classical convolutional neural networks (CNNs) in computer vision tasks. ViT's versatility and performance is best understood by proceeding with a backward analysis. In this study, we aim to identify, analyse and extract the key elements of ViT by backtracking on the origin of Transformer neural architectures (TNA). We hereby highlight the benefits and constraints of the Transformer architecture, as well as the foundational role of self- and multi-head attention mechanisms. We now understand why self-attention might be all we need. Our interest of the TNA has driven us to consider self-attention as a computational primitive. This generic computation framework provides flexibility in the tasks that can be performed by the Transformer. After a good grasp on Transformers, we went on to analyse their vision-applied counterpart, namely ViT, which is roughly a transposition of the initial Transformer architecture to an image-recognition and -processing context. When it comes to computer vision, convolutional neural networks are considered the go to paradigm. Because of their proclivity for vision, we naturally seek to understand how ViT compared to CNN. It seems that their inner workings are rather different. CNNs are built with a strong inductive bias, an engineering feature that provides them with the ability to perform well in vision tasks. ViT have less inductive bias and need to learn this (convolutional filters) by ingesting enough data. This makes Transformer-based architecture rather data-hungry and more adaptable. Finally, we describe potential enhancements on the Transformer with a focus on possible architectural extensions. We discuss some exciting learning approaches in machine learning. Our last part analysis leads us to ponder on the flexibility of Transformer-based neural architecture. We realize and argue that this feature might possibility be linked to their Turing-completeness.




Learning Deep Learning


Book Description

NVIDIA's Full-Color Guide to Deep Learning: All You Need to Get Started and Get Results "To enable everyone to be part of this historic revolution requires the democratization of AI knowledge and resources. This book is timely and relevant towards accomplishing these lofty goals." -- From the foreword by Dr. Anima Anandkumar, Bren Professor, Caltech, and Director of ML Research, NVIDIA "Ekman uses a learning technique that in our experience has proven pivotal to success—asking the reader to think about using DL techniques in practice. His straightforward approach is refreshing, and he permits the reader to dream, just a bit, about where DL may yet take us." -- From the foreword by Dr. Craig Clawson, Director, NVIDIA Deep Learning Institute Deep learning (DL) is a key component of today's exciting advances in machine learning and artificial intelligence. Learning Deep Learning is a complete guide to DL. Illuminating both the core concepts and the hands-on programming techniques needed to succeed, this book is ideal for developers, data scientists, analysts, and others--including those with no prior machine learning or statistics experience. After introducing the essential building blocks of deep neural networks, such as artificial neurons and fully connected, convolutional, and recurrent layers, Magnus Ekman shows how to use them to build advanced architectures, including the Transformer. He describes how these concepts are used to build modern networks for computer vision and natural language processing (NLP), including Mask R-CNN, GPT, and BERT. And he explains how a natural language translator and a system generating natural language descriptions of images. Throughout, Ekman provides concise, well-annotated code examples using TensorFlow with Keras. Corresponding PyTorch examples are provided online, and the book thereby covers the two dominating Python libraries for DL used in industry and academia. He concludes with an introduction to neural architecture search (NAS), exploring important ethical issues and providing resources for further learning. Explore and master core concepts: perceptrons, gradient-based learning, sigmoid neurons, and back propagation See how DL frameworks make it easier to develop more complicated and useful neural networks Discover how convolutional neural networks (CNNs) revolutionize image classification and analysis Apply recurrent neural networks (RNNs) and long short-term memory (LSTM) to text and other variable-length sequences Master NLP with sequence-to-sequence networks and the Transformer architecture Build applications for natural language translation and image captioning NVIDIA's invention of the GPU sparked the PC gaming market. The company's pioneering work in accelerated computing--a supercharged form of computing at the intersection of computer graphics, high-performance computing, and AI--is reshaping trillion-dollar industries, such as transportation, healthcare, and manufacturing, and fueling the growth of many others. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.




Autonomous Vehicles and Systems


Book Description

This book captures multidisciplinary research encompassing various facets of autonomous vehicle systems (AVS) research and developments. The AVS field is rapidly moving towards realization with numerous advances continually reported. The contributions to this field come from widely varying branches of knowledge, making it a truly multidisciplinary area of research and development. The topics covered in the book include: AI and deep learning for AVS Autonomous steering through deep neural networks Adversarial attacks and defenses on autonomous vehicles Gesture recognition for vehicle control Multi-sensor fusion in autonomous vehicles Teleoperation technologies for AVS Simulation and game theoretic decision making for AVS Path following control system design for AVS Hybrid cloud and edge solutions for AVS Ethics of AVS




Computer Vision – ECCV 2022


Book Description

The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23–27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.




Emerging Research in Electronics, Computer Science and Technology


Book Description

This book presents the proceedings of the International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT) organized by PES College of Engineering in Mandya. Featuring cutting-edge, peer-reviewed articles from the field of electronics, computer science and technology, it is a valuable resource for members of the scientific research community.




Computer Vision


Book Description

Computer vision has made enormous progress in recent years, and its applications are multifaceted and growing quickly, while many challenges still remain. This book brings together a range of leading researchers to examine a wide variety of research directions, challenges, and prospects for computer vision and its applications. This book highlights various core challenges as well as solutions by leading researchers in the field. It covers such important topics as data-driven AI, biometrics, digital forensics, healthcare, robotics, entertainment and XR, autonomous driving, sports analytics, and neuromorphic computing, covering both academic and industry R&D perspectives. Providing a mix of breadth and depth, this book will have an impact across the fields of computer vision, imaging, and AI. Computer Vision: Challenges, Trends, and Opportunities covers timely and important aspects of computer vision and its applications, highlighting the challenges ahead and providing a range of perspectives from top researchers around the world. A substantial compilation of ideas and state-of-the-art solutions, it will be of great benefit to students, researchers, and industry practitioners.




Advances in Computer Science and its Applications


Book Description

These proceedings focus on various aspects of computer science and its applications, thus providing an opportunity for academic and industry professionals to discuss the latest issues and progress in this and related areas. The book includes theory and applications alike.




Computer Vision with SAS


Book Description

Computer vision is a field of artificial intelligence that trains computers to interpret and understand the visual world. In recent years, computer vision has begun to rival and even surpass human visual abilities in many areas. SAS offers many different solutions to train computers to "see" by identifying and classifying objects, and several groundbreaking papers have been written to demonstrate these techniques. The papers included in this special collection demonstrate how the latest computer vision tools and techniques can be used to solve a variety of business problems.




Medical Imaging and Computer-Aided Diagnosis


Book Description

This book covers virtually all aspects of image formation in medical imaging, including systems based on ionizing radiation (x-rays, gamma rays) and non-ionizing techniques (ultrasound, optical, thermal, magnetic resonance, and magnetic particle imaging) alike. In addition, it discusses the development and application of computer-aided detection and diagnosis (CAD) systems in medical imaging. Given its coverage, the book provides both a forum and valuable resource for researchers involved in image formation, experimental methods, image performance, segmentation, pattern recognition, feature extraction, classifier design, machine learning / deep learning, radiomics, CAD workstation design, human–computer interaction, databases, and performance evaluation.




The Open Knowledge Society


Book Description

It is a great pleasure to share with you the Springer CCIS proceedings of the First World Summit on the Knowledge Society - WSKS 2008 that was organized by the Open Research Society, NGO, http://www.open-knowledge-society.org, and hosted by the American College of Greece, http://www.acg.gr, during September 24–27, 2008, in Athens, Greece. The World Summit on the Knowledge Society Series is an international attempt to promote a dialogue on the main aspects of a knowledge society toward a better world for all based on knowledge and learning. The WSKS Series brings together academics, people from industry, policy makers, politicians, government officers and active citizens to look at the impact of infor- tion technology, and the knowledge-based era it is creating, on key facets of today’s world: the state, business, society and culture. Six general pillars provide the constitutional elements of the WSKS series: • Social and Humanistic Computing for the Knowledge Society––Emerging Te- nologies and Systems for the Society and Humanity • Knowledge, Learning, Education, Learning Technologies and E-learning for the Knowledge Society • Information Technologies––Knowledge Management Systems––E-business and Enterprise Information Systems for the Knowledge Society • Culture and Cultural Heritage––Technology for Culture Management––Management of Tourism and Entertainment––Tourism Networks in the Knowledge Society • Government and Democracy for the Knowledge Society • Research and Sustainable Development in the Knowledge Society The summit provides a distinct, unique forum for cross-disciplinary fertilization of research, favoring the dissemination of research that is relevant to international re-