Mathematical Concepts


Book Description

The main intention of this book is to describe and develop the conceptual, structural and abstract thinking of mathematics. Specific mathematical structures are used to illustrate the conceptual approach; providing a deeper insight into mutual relationships and abstract common features. These ideas are carefully motivated, explained and illustrated by examples so that many of the more technical proofs can be omitted. The book can therefore be used: · simply as an overview of the panorama of mathematical structures and the relations between them, to be supplemented by more detailed texts whenever you want to acquire a working knowledge of some structure · by itself as a first introduction to abstract mathematics · together with existing textbooks, to put their results into a more general perspective · to gain a new and hopefully deeper perspective after having studied such textbooks Mathematical Concepts has a broader scope and is less detailed than standard mathematical textbooks so that the reader can readily grasp the essential concepts and ideas for individual needs. It will be suitable for advanced mathematicians, postgraduate students and for scientists from other fields with some background in formal reasoning.




What is a Mathematical Concept?


Book Description

Leading thinkers in mathematics, philosophy and education offer new insights into the fundamental question: what is a mathematical concept?




Concepts of Modern Mathematics


Book Description

In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts of groups, sets, subsets, topology, Boolean algebra, and other mathematical subjects. 200 illustrations.




Evolution of Mathematical Concepts


Book Description

Accessible to students and relevant to specialists, this remarkable book by a prominent educator offers a unique perspective on the evolutionary development of mathematics. Rather than conducting a survey of the history or philosophy of mathematics, Raymond L. Wilder envisions mathematics as a broad cultural phenomenon. His treatment examines and illustrates how such concepts as number and length were affected by historic and social events. Starting with a brief consideration of preliminary notions, this study explores the early evolution of numbers, the evolution of geometry, and the conquest of the infinite as embodied by real numbers. A detailed look at the processes of evolution concludes with an examination of the evolutionary aspects of modern mathematics.




Mathematical Concepts and Methods in Modern Biology


Book Description

Mathematical Concepts and Methods in Modern Biology offers a quantitative framework for analyzing, predicting, and modulating the behavior of complex biological systems. The book presents important mathematical concepts, methods and tools in the context of essential questions raised in modern biology.Designed around the principles of project-based learning and problem-solving, the book considers biological topics such as neuronal networks, plant population growth, metabolic pathways, and phylogenetic tree reconstruction. The mathematical modeling tools brought to bear on these topics include Boolean and ordinary differential equations, projection matrices, agent-based modeling and several algebraic approaches. Heavy computation in some of the examples is eased by the use of freely available open-source software. - Features self-contained chapters with real biological research examples using freely available computational tools - Spans several mathematical techniques at basic to advanced levels - Offers broad perspective on the uses of algebraic geometry/polynomial algebra in molecular systems biology




Concepts and Problems for Mathematical Competitors


Book Description

This original work discusses mathematical methods needed by undergraduates in the United States and Canada preparing for competitions at the level of the International Mathematical Olympiad (IMO) and the Putnam Competition. The six-part treatment covers counting methods, number theory, inequalities and the theory of equations, metrical geometry, analysis, and number representations and logic. Includes problems with solutions plus 1,000 problems for students to finish themselves.




Mathematical Mindsets


Book Description

Banish math anxiety and give students of all ages a clear roadmap to success Mathematical Mindsets provides practical strategies and activities to help teachers and parents show all children, even those who are convinced that they are bad at math, that they can enjoy and succeed in math. Jo Boaler—Stanford researcher, professor of math education, and expert on math learning—has studied why students don't like math and often fail in math classes. She's followed thousands of students through middle and high schools to study how they learn and to find the most effective ways to unleash the math potential in all students. There is a clear gap between what research has shown to work in teaching math and what happens in schools and at home. This book bridges that gap by turning research findings into practical activities and advice. Boaler translates Carol Dweck's concept of 'mindset' into math teaching and parenting strategies, showing how students can go from self-doubt to strong self-confidence, which is so important to math learning. Boaler reveals the steps that must be taken by schools and parents to improve math education for all. Mathematical Mindsets: Explains how the brain processes mathematics learning Reveals how to turn mistakes and struggles into valuable learning experiences Provides examples of rich mathematical activities to replace rote learning Explains ways to give students a positive math mindset Gives examples of how assessment and grading policies need to change to support real understanding Scores of students hate and fear math, so they end up leaving school without an understanding of basic mathematical concepts. Their evasion and departure hinders math-related pathways and STEM career opportunities. Research has shown very clear methods to change this phenomena, but the information has been confined to research journals—until now. Mathematical Mindsets provides a proven, practical roadmap to mathematics success for any student at any age.




What is Mathematics?


Book Description

The teaching and learning of mathematics has degenerated into the realm of rote memorization, the outcome of which leads to satisfactory formal ability but not real understanding or greater intellectual independence. The new edition of this classic work seeks to address this problem. Its goal is to put the meaning back into mathematics. "Lucid . . . easily understandable".--Albert Einstein. 301 linecuts.




Concepts of Mathematical Modeling


Book Description

Appropriate for undergraduate and graduate students, this text features independent sections that illustrate the most important principles of mathematical modeling, a variety of applications, and classic models. Students with a solid background in calculus and some knowledge of probability and matrix theory will find the material entirely accessible. The range of subjects includes topics from the physical, biological, and social sciences, as well as those of operations research. Discussions cover related mathematical tools and the historical eras from which the applications are drawn. Each section is preceded by an abstract and statement of prerequisites, and answers or hints are provided for selected exercises. 1984 edition.




Illustrating Mathematics


Book Description

This book is for anyone who wishes to illustrate their mathematical ideas, which in our experience means everyone. It is organized by material, rather than by subject area, and purposefully emphasizes the process of creating things, including discussions of failures that occurred along the way. As a result, the reader can learn from the experiences of those who came before, and will be inspired to create their own illustrations. Topics illustrated within include prime numbers, fractals, the Klein bottle, Borromean rings, tilings, space-filling curves, knot theory, billiards, complex dynamics, algebraic surfaces, groups and prime ideals, the Riemann zeta function, quadratic fields, hyperbolic space, and hyperbolic 3-manifolds. Everyone who opens this book should find a type of mathematics with which they identify. Each contributor explains the mathematics behind their illustration at an accessible level, so that all readers can appreciate the beauty of both the object itself and the mathematics behind it.