Wide Area Monitoring, Protection and Control Systems


Book Description

Wide area monitoring, protection and control systems (WAMPACs) have been recognized as the most promising enabling technologies to meet challenges of modern electric power transmission systems, where reliability, economics, environmental and other social objectives must be balanced to optimize the grid assets and satisfy growing electrical demand. To this aim WAMPAC requires precise phasor and frequency information, which are acquired by deploying multiple time synchronized sensors, known as Phasor Measurement Units (PMUs), providing precise synchronized information about voltage and current phasors, frequency and rate-of-change-of-frequency.




Power System Monitoring and Control


Book Description

POWER SYSTEM MONITORING AND CONTROL An invaluable resource for addressing the myriad critical technical engineering considerations in modern electric power system design and operation Power System Monitoring and Control (PSMC) is becoming increasingly significant in the design, planning, and operation of modern electric power systems. In response to the existing challenge of integrating advanced metering, computation, communication, and control into appropriate levels of PSMC, Power System Monitoring and Control presents a comprehensive overview of the basic principles and key technologies for the monitoring, protection, and control of contemporary wide-area power systems. A variety of topical issues are addressed, including renewable energy sources, smart grids, wide area stabilizing, coordinated voltage regulation and angle oscillation damping—as well as the advantages of phasor measurement units (PMUs) and global positioning system (GPS) time signal. Analysis and synthesis examples, along with case studies, add depth and clarity to all topics. Provides an up-to-date and comprehensive reference for researchers and engineers working on wide-area PSMC Links fundamental concepts of PSMC, advanced metering and control theory/techniques, and practical engineering considerations Covers PSMC problem understanding, design, practical aspects, and topics such as smart grid and coordinated angle oscillation damping and voltage regulation Incorporates the authors’ experiences teaching and researching in international locales including Japan, Singapore, Malaysia, and Australia Power System Monitoring and Control is ideally suited for a graduate course on this topic. It is also a practical reference for researchers and professional engineers working in power system monitoring, dynamic stability and control.




Interconnected Power Systems


Book Description

This book reports on the latest findings in the application of the wide area measurement systems (WAMS) in the analysis and control of power systems. The book collects new research ideas and achievements including a delay-dependent robust design method, a wide area robust coordination strategy, a hybrid assessment and choice method for wide area signals, a free-weighting matrices method and its application, as well as the online identification methods for low-frequency oscillations. The main original research results of this book are a comprehensive summary of the authors’ latest six-year study. The book will be of interest to academic researchers, R&D engineers and graduate students in power systems who wish to learn the core principles, methods, algorithms, and applications of the WAMS.




Wide Area Monitoring, Protection and Control


Book Description

One of the most challenges in the development of smart grids today is the presence of phasor measurement units with modern communication facilities. The presence of such technologies will enable advanced smart grid applications that were not possible before such as the real time tracking of system dynamics. In addition, one of its goal issues is to maintain a high level of system stability. However, with rapid expansion of power system to meet the needs of the increasing demands of customers, and under the pressure of economical aspects placed by utilities to push the systems to operate very close to their limits, system wide disturbance become more likely. Therefore, the need for a systematic study and design of a comprehensive system control strategy is gaining more and more attention. Wide area protection is a concept of using system- wide information and sending selected local information to remote locations in order to mitigate the propagation of major disturbances. This book proposed a WAMPAC system with a defensive approach to counteract the transient instabilities in power systems. The system objective is to maximize the system stability and avoid occurrence of blackouts.




Voltage Control and Protection in Electrical Power Systems


Book Description

Based on the author’s twenty years of experience, this book shows the practicality of modern, conceptually new, wide area voltage control in transmission and distribution smart grids, in detail. Evidence is given of the great advantages of this approach, as well as what can be gained by new control functionalities which modern technologies now available can provide. The distinction between solutions of wide area voltage regulation (V-WAR) and wide area voltage protection (V-WAP) are presented, demonstrating the proper synergy between them when they operate on the same power system as well as the simplicity and effectiveness of the protection solution in this case. The author provides an overview and detailed descriptions of voltage controls, distinguishing between generalities of underdeveloped, on-field operating applications and modern and available automatic control solutions, which are as yet not sufficiently known or perceived for what they are: practical, high-performance and reliable solutions. At the end of this thorough and complex preliminary analysis the reader sees the true benefits and limitations of more traditional voltage control solutions, and gains an understanding and appreciation of the innovative grid voltage control and protection solutions here proposed; solutions aimed at improving the security, efficiency and quality of electrical power system operation around the globe. Voltage Control and Protection in Electrical Power Systems: from System Components to Wide Area Control will help to show engineers working in electrical power companies and system operators the significant advantages of new control solutions and will also interest academic control researchers studying ways of increasing power system stability and efficiency.




Modern Solutions for Protection, Control, and Monitoring of Electric Power Systems


Book Description

Modern Solutions for Protection, Control,and Monitoring of Electric Power Systems, Edited by Héctor J. Altuve Ferrer and Edmund O. Schweitzer, III ¿ publishing on June 1, 2010 ¿ addresses the concerns and challenges of protection, control, communications and power system engineers. It also presents solutions relevant to decision-making personnel at electric utilities and industries, and is appropriate for university students and faculty.Approaches, technology solutions and examples explained in this book provide engineers with tools to help meet today¿s power system requirements, including:- Reduced security margins resulting from limitations on new transmission lines and generating stations.- Variable and less predictable power flows stemming from new generation sources and free energy markets.- Modern protection, control, and monitoring solutions to prevent and mitigate blackouts.- Increased communications and automation (sometimes referred to as the ¿smart grid¿)Modern Solutions brings together the combined expertise of engineers working on power system operation, planning, asset management, maintenance, protection, control, monitoring, and communications. Authors include Allen D. Risley, Armando Guzmán Casillas, Brian A. McDermott, Daquing Hou, David A. Costello, David J. Dolezilek, Demtrios Tziouvaras, Edmund O. Schweitzer, III, Gabriel Benmouyal, Gregary C. Zweigle, Héctor J. Altuve Ferrer, Joseph B. Mooney, Michael J. Thompson, Ronald A. Schwartz, and Veselin Skendzic.




Soft Computing in Condition Monitoring and Diagnostics of Electrical and Mechanical Systems


Book Description

This book addresses a range of complex issues associated with condition monitoring (CM), fault diagnosis and detection (FDD) in smart buildings, wide area monitoring (WAM), wind energy conversion systems (WECSs), photovoltaic (PV) systems, structures, electrical systems, mechanical systems, smart grids, etc. The book’s goal is to develop and combine all advanced nonintrusive CMFD approaches on a common platform. To do so, it explores the main components of various systems used for CMFD purposes. The content is divided into three main parts, the first of which provides a brief introduction, before focusing on the state of the art and major research gaps in the area of CMFD. The second part covers the step-by-step implementation of novel soft computing applications in CMFD for electrical and mechanical systems. In the third and final part, the simulation codes for each chapter are included in an extensive appendix to support newcomers to the field.




Wide Area Monitoring, Protection and Control in the Future Great Britain Power System


Book Description

The growing issue of power-grid congestion and a global increase in disturbances have emphasized the need to enhance electrical power networks using Wide Area Monitoring, Protection, and Control (WAMPAC). This is a cost-effective solution for improving power system planning and operation. In addition to these existing issues, the Great Britain (GB) power system is facing significant changes, in terms of both power transmission technology and the nature of the generation mix, that will cause the operation of the future GB power system to become more unpredictable and complex. Therefore, developing a WAMPAC system will be essential to enhance the stability and optimise the operation of the future GB power system. The main objectives of the research presented in this thesis are to design a GB WAMPAC system and develop solutions to overcome the challenges that will be involved in the initial stage of the GB WAMPAC project. As Synchronized Measurement Technology (SMT) is the most essential element and enabler of WAMPAC, this thesis first provides a study of SMT and its applications. This study also reviews the state of the art of these SMT applications, and worldwide experience with the operation of WAMPAC in terms of system architecture, communication technologies and data management. After the basic study of WAMPAC, this thesis presents a new methodology for designing a roadmap that will ensure the future GB WAMPAC system will be developed in a logical and economic manner. This methodology takes into account the international experience with WAMPAC project management and the practical challenges faced in the future GB power system. With this new methodology, the GB strategies for the development of WAMPAC are devised. Two major SMT applications are then developed that can form main parts of the proposed future GB WAMPAC system. These applications are developed to enhance the small signal stability of the future GB power system.1. Wide Area Inter-area Oscillation Monitoring using Newton Type Algorithm.2. Wide Area Inter-area Oscillation Control using Power Electronic Devices. Finally, the operation of a proposed GB WAMPAC system is demonstrated using the DIgSILENT software package. The proposed real time applications are tested and evaluated using dynamic simulations of a full GB power system model. In addition, some key factors that will influence the operation of the future GB WAMPAC system will be analyzed and discussed.




Security and Resilience of Control Systems


Book Description

This book comprises a set of chapters that introduce various topics pertinent to novel approaches towards enhancing cyber-physical measures for increased security and resilience levels in control systems. The unifying theme of these approaches lies in the utilization of knowledge and models of the physical systems, rather than an attempt to reinvigorate conventional IT-based security measures. The contributing authors present perspectives on network security, game theory, and control, as well as views on how these disciplines can be combined to design resilient, safe, and secure control systems. The book explores how attacks in different forms, such as false data injections and denial-of-service can be very harmful, and may not be detected unless the security measures exploit the physical models. Several applications are discussed, power systems being considered most thoroughly. Because of its interdisciplinary nature—techniques from systems control, game theory, signal processing and computer science all make contributions—Security and Resilience of Control Systems will be of interest to academics, practitioners and graduate students with a broad spectrum of interests.




Microgrid: Operation, Control, Monitoring and Protection


Book Description

This book discusses various challenges and solutions in the fields of operation, control, design, monitoring and protection of microgrids, and facilitates the integration of renewable energy and distribution systems through localization of generation, storage and consumption. It covers five major topics relating to microgrid i.e., operation, control, design, monitoring and protection. The book is primarily intended for electric power and control engineering researchers who are seeking factual information, but also appeals to professionals from other engineering disciplines wanting an overview of the entire field or specific information on one aspect of it. Featuring practical case studies and demonstrating different root causes of large power failures, it helps readers develop new concepts for mitigating blackout issues. This book is a comprehensive reference resource for graduate and postgraduate students, academic researchers, and practicing engineers working in the fields of power system and microgrid.