Book Description
“Go into partnership with nature; she does more than half the work and asks none of the fee.” - Martin H. Fisher. Nature has undertaken an immense amount of work throughout evolution. The evolutionary process has provided a power of information that can address key questions such as - Which immune molecules and pathways are conserved across species? Which molecules and pathways are exploited by pathogens to cause disease? What methods can be broadly used or readily adapted for wild immunology? How does co-infection and exposure to a dynamic environment affect immunity? Section 1 addresses these questions through an evolutionary approach. Laboratory mice have been instrumental in dissecting the nuances of the immune system. The first paper investigates the immunology of wild mice and reviews how evolution and ecology sculpt differences in the immune responses of wild mice and laboratory mice. A better understanding of wild immunology is required and sets the scene for the subsequent papers. Although nature doesn't ask for a fee, it is appropriate that nature is repaid in one form or another. The translational theme of the second section incorporates papers that translate wild immunology back to nature. But any non-human, non-laboratory mouse research environment is hindered by a lack of research tools, hence the underlying theme throughout the second section. Physiological resource allocation is carefully balanced according to the most important needs of the body. Tissue homeostasis can involve trade-offs between energy requirements of the host and compensatory mechanisms to respond to infection. The third section comprises a collection of papers that employ novel strategies to understand how the immune system is compensated under challenging physiological situations. Technology has provided substantial advances in understanding the immune system at cellular and molecular levels. The specificity of these tools (e.g. monoclonal antibodies) often limits the study to a specific species or strain. A consequence of similar genetic sequences or cross-reactivity is that the technology can be adapted to wild species. Section 4 provides two examples of probing wild immunology by adapting technology developed for laboratory species.