Wind and the Built Environment


Book Description

This book assesses wind engineering research studies in the past two decades to identify an interdisciplinary research agenda and delineate an action plan for evaluation of critical wind engineering efforts. It promotes the interdisciplinary approach to achieve collaborative research, assesses the feasibility of formalizing undergraduate wind engineering curricula, and assesses international wind engineering research activities and transfer approaches for U.S. applications.




Urban Wind Environment


Book Description

In the context of urbanization and compact urban living, conventional experience-based planning and design often cannot adequately address the serious environmental issues, such as thermal comfort and air quality. The ultimate goal of this book is to facilitate a paradigm shift from the conventional experience-based ways to a more scientific, evidence-based process of decision making in both urban planning and architectural design stage. This book introduces novel yet practical modelling and mapping methods, and provides scientific understandings of the urban typologies and wind environment from the urban to building scale through real examples and case studies. The tools provided in this book aid a systematic implementation of environmental information from urban planning to building design by making wind information more accessible to both urban planners and architects, and significantly increasing the impact of urban climate information on the practical urban planning and design. This book is a useful reference book to architectural postgraduates, design practitioners and planners, urban climate researchers, as well as policy makers for developing future livable and sustainable cities.




Wind Energy in the Built Environment


Book Description

This book describes the wind resources in the built environment that can be converted into energy by a wind turbine. It especially deals with the integration of a wind turbine and a building in such a way that the building concentrates the available wind energy for the wind turbine. The three different ways to concentrate wind power are examined: wind turbines on the roof or at the sides of a building; wind turbines between two airfoil shaped buildings; wind turbines in ducts through buildings.




Wind Environment Around Buildings


Book Description

Copies are supplied by TSO's on-demand publishing service




Life Cycle Assessment in the Built Environment


Book Description

Life cycle assessment enables the identification of a broad range of potential environmental impacts occurring across the entire life of a product, from its design through to its eventual disposal or reuse. The need for life cycle assessment to inform environmental design within the built environment is critical, due to the complex range of materials and processes required to construct and manage our buildings and infrastructure systems. After outlining the framework for life cycle assessment, this book uses a range of case studies to demonstrate the innovative input-output-based hybrid approach for compiling a life cycle inventory. This approach enables a comprehensive analysis of a broad range of resource requirements and environmental outputs so that the potential environmental impacts of a building or infrastructure system can be ascertained. These case studies cover a range of elements that are part of the built environment, including a residential building, a commercial office building and a wind turbine, as well as individual building components such as a residential-scale photovoltaic system. Comprehensively introducing and demonstrating the uses and benefits of life cycle assessment for built environment projects, this book will show you how to assess the environmental performance of your clients’ projects, to compare design options across their entire life and to identify opportunities for improving environmental performance.




Wind Issues in the Design of Buildings


Book Description

Wind Issues in the Design of Buildings explains the ways that structural designers accommodate the impact of extreme wind events on the built environment. By studying the flow and pressure fields around buildings, architects and engineers can identify and select the best strategies for ensuring that a building will resist the loads due to high winds, maintaining pleasant conditions in outdoor spaces, assessing natural ventilation potential, and seeing that any exhaust fumes are dispersed adequately. This volume identifies wind characteristics and describes the effects of winds generated by hurricanes, tornadoes, and thunderstorms. It explains the internal and external pressures on a building's cladding (skin) and the effects of wind-borne debris. A building's response to the structural loads caused by wind is outlined, along with techniques for resisting wind. A chapter is devoted to wind tunnels and physical modeling to predict structural loads, cladding response, pedestrian experience, topographic effects, and snow deposition. A section of frequently asked questions, a glossary, and recommended reading make this material in this volume accessible to students and nontechnical members of project teams. Structural engineers and architects will find this book a useful aide in explaining wind-related issues to clients, builders, building officials, and owners. Students in structural and architectural engineering will welcome the clear, concise presentation of an important component of structural design.




Energy and Climate in the Urban Built Environment


Book Description

Both the number and percentage of people living in urban areas is growing rapidly. Up to half of the world's population is expected to be living in a city by the end of the century and there are over 170 cities in the world with populations over a million. Cities have a huge impact on the local climate and require vast quantities of energy to keep them functioning. The urban environment in turn has a big impact on the performance and needs of buildings. The size, scale and mechanism of these interactions is poorly understood and strategies to mitigate them are rarely implemented. This is the first comprehensive book to address these questions. It arises out of a programme of work (POLISTUDIES) carried out for the Save programme of the European Commission. Chapters describe not only the main problems encountered such as the heat island and canyon effects, but also a range of design solutions that can be adopted both to improve the energy performance and indoor air quality of individual buildings and to look at aspects of urban design that can reduce these climatic effects. The book concludes with some examples of innovative urban bioclimatic buildings. The project was co-ordinated by Professor Mat Santamouris from the University of Athens who is also the editor of the book. Other contributions are from the University of Thessaloniki, Greece, ENTPE, Lyons, France and the University of Stuttgart, Germany.




Aeolian Winds and the Spirit in Renaissance Architecture


Book Description

Written by scholars of international stature, Aeolian Winds and the Spirit in Renaissance Architecture presents studies of Renaissance pneumatology exploring the relationship between architecture and the disciplines of art and science. One of the principle goals of Renaissance architects was to augment the powers of pneuma so as to foster the art of well-being. Central to the study of pneumatic architecture are six Italian villas connected together by a ventilating system of caves and tunnels, including Eolia, in which Trento established an academic circle of scholars that included Palladio, Tazzo and Ruzzante. Picking up on current interest in environmental issues, Aeolian Winds and the Spirit in Renaissance Architecture reintroduces Renaissance perspectives on the key relationships in environmental issues between architecture and art and science. This beautifully illustrated and unprecedented study will illuminate the studies of any architecture or Renaissance student or scholar.




Metropolitan Sustainability


Book Description

Global populations have grown rapidly in recent decades, leading to ever increasing demands for shelter, resources, energy and utilities. Coupled with the worldwide need to achieve lower impact buildings and conservation of resources, the need to achieve sustainability in urban environments has never been more acute. This book critically reviews the fundamental issues and applied science, engineering and technology that will enable all cities to achieve a greater level of metropolitan sustainability, and assist nations in meeting the needs of their growing urban populations.Part one introduces key issues related to metropolitan sustainability, including the use of both urban metabolism and benefit cost analysis. Part two focuses on urban land use and the environmental impact of the built environment. The urban heat island effect, redevelopment of brownfield sites and urban agriculture are discussed in depth, before part three goes on to explore urban air pollution and emissions control. Urban water resources, reuse and management are explored in part four, followed by a study of urban energy supply and management in part five. Solar, wind and bioenergy, the role of waste-to-energy systems in the urban infrastructure, and smart energy for cities are investigated. Finally, part six considers sustainable urban development, transport and planning.With its distinguished editor and international team of expert contributors, Metropolitan sustainability is an essential resource for low-impact building engineers, sustainability consultants and architects, town and city planners, local/municipal authorities, and national and non-governmental bodies, and provides a thorough overview for academics of all levels in this field. - Critically reviews the fundamental issues and applied science, engineering and technology that will enable all cities to achieve a greater level of metropolitan sustainability - Will assist nations in meeting the needs of their growing urban populations - Chapters discuss urban land use, the environmental impact of the build environment, the urban heat island effect, urban air pollution and emissions control, among other topics




Hurricane Mitigation for the Built Environment


Book Description

"Alvarez drives home the point that for buildings and communities located in hurricane-prone regions, it is not a question of whether the area will be impacted, but when it will be impacted. The book makes a strong case for taking responsibility to understand the vulnerabilities of buildings and structures to hurricane impacts." Timothy Reinhold, P