High-Rise Buildings under Multi-Hazard Environment


Book Description

This book discusses performance-based seismic and wind-resistant design for high-rise building structures, with a particular focus on establishing an integrated approach for performance-based wind engineering, which is currently less advanced than seismic engineering. This book also provides a state-of-the-art review of numerous methodologies, including computational fluid dynamics (CFD), extreme value analysis, structural optimization, vibration control, pushover analysis, response spectrum analysis, modal parameter identification for the assessment of the wind-resistant and seismic performance of tall buildings in the design stage and actual tall buildings in use. Several new structural optimization methods, including the augmented optimality criteria method, have been developed and employed in the context of performance-based design. This book is a valuable resource for students, researchers and engineers in the field of civil and structural engineering.







Wind Effects on Structures


Book Description

Provides structural engineers with the knowledge and practical tools needed to perform structural designs for wind that incorporate major technological, conceptual, analytical and computational advances achieved in the last two decades. With clear explanations and documentation of the concepts, methods, algorithms, and software available for accounting for wind loads in structural design, it also describes the wind engineer's contributions in sufficient detail that they can be effectively scrutinized by the structural engineer in charge of the design. Wind Effects on Structures: Modern Structural Design for Wind, 4th Edition is organized in four sections. The first covers atmospheric flows, extreme wind speeds, and bluff body aerodynamics. The second examines the design of buildings, and includes chapters on aerodynamic loads; dynamic and effective wind-induced loads; wind effects with specified MRIs; low-rise buildings; tall buildings; and more. The third part is devoted to aeroelastic effects, and covers both fundamentals and applications. The last part considers other structures and special topics such as trussed frameworks; offshore structures; and tornado effects. Offering readers the knowledge and practical tools needed to develop structural designs for wind loadings, this book: Points out significant limitations in the design of buildings based on such techniques as the high-frequency force balance Discusses powerful algorithms, tools, and software needed for the effective design for wind, and provides numerous examples of application Discusses techniques applicable to structures other than buildings, including stacks and suspended-span bridges Features several appendices on Elements of Probability and Statistics; Peaks-over-Threshold Poisson-Process Procedure for Estimating Peaks; estimates of the WTC Towers’ Response to Wind and their shortcomings; and more Wind Effects on Structures: Modern Structural Design for Wind, 4th Edition is an excellent text for structural engineers, wind engineers, and structural engineering students and faculty.




Timber Engineering


Book Description

Timber construction is one of the most prevalent methods of constructing buildings in North America and an increasingly significant method of construction in Europe and the rest of the world. Timber Engineering deals not only with the structural aspects of timber construction, structural components, joints and systems based on solid timber and engineered wood products, but also material behaviour and properties on a wood element level. Produced by internationally renowned experts in the field, this book represents the state of the art in research on the understanding of the material behaviour of solid wood and engineered wood products. There is no comparable compendium currently available on the topic - the subjects represented include the most recent phenomena of timber engineering and the newest development of practice-related research. Grouped into three different sections, 'Basic properties of wood-based structural elements', 'Design aspects on timber structures' and 'Joints and structural assemblies', this book focuses on key issues in the understanding of: timber as a modern engineered construction material with controlled and documented properties the background for design of structural systems based on timber and engineered wood products the background for structural design of joints in structural timber systems Furthermore, this invaluable book contains advanced teaching material for all technical schools and universities involved in timber engineering. It also provides an essential resource for timber engineering students and researchers, as well as practicing structural and civil engineers.




AEI 2015


Book Description







Wind Loading of Structures


Book Description

Bridging the gap between wind and structural engineering, Wind Loading of Structures is essential reading for practising civil, structural and mechanical engineers, and graduate students of wind engineering, presenting the principles of wind engineering and providing guidance on the successful design of structures for wind loading by gales, hurricanes, typhoons, thunderstorm downdrafts and tornados.




Design of Buildings for Wind


Book Description

ASCE 7 is the US standard for identifying minimum design loads for buildings and other structures. ASCE 7 covers many load types, of which wind is one. The purpose of this book is to provide structural and architectural engineers with the practical state-of-the-art knowledge and tools needed for designing and retrofitting buildings for wind loads. The book will also cover wind-induced loss estimation. This new edition include a guide to the thoroughly revised, 2010 version of the ASCE 7 Standard provisions for wind loads; incorporate major advances achieved in recent years in the design of tall buildings for wind; present material on retrofitting and loss estimation; and improve the presentation of the material to increase its usefulness to structural engineers. Key features: New focus on tall buildings helps make the analysis and design guidance easier and less complex. Covers the new simplified design methods of ASCE 7-10, guiding designers to clearly understand the spirit and letter of the provisions and use the design methods with confidence and ease. Includes new coverage of retrofitting for wind load resistance and loss estimation from hurricane winds. Thoroughly revised and updated to conform with current practice and research.




Experimental Vibration Analysis for Civil Structures


Book Description

This edited volume presents selected contributions from the International Conference on Experimental Vibration Analysis of Civil Engineering Structures held in San Diego, California in 2017 (EVACES2017). The event brought together engineers, scientists, researchers, and practitioners, providing a forum for discussing and disseminating the latest developments and achievements in all major aspects of dynamic testing for civil engineering structures, including instrumentation, sources of excitation, data analysis, system identification, monitoring and condition assessment, in-situ and laboratory experiments, codes and standards, and vibration mitigation.




Advanced Structural Wind Engineering


Book Description

This book serves as a textbook for advanced courses as it introduces state-of-the-art information and the latest research results on diverse problems in the structural wind engineering field. The topics include wind climates, design wind speed estimation, bluff body aerodynamics and applications, wind-induced building responses, wind, gust factor approach, wind loads on components and cladding, debris impacts, wind loading codes and standards, computational tools and computational fluid dynamics techniques, habitability to building vibrations, damping in buildings, and suppression of wind-induced vibrations. Graduate students and expert engineers will find the book especially interesting and relevant to their research and work.