Wind-induced Motion of Tall Buildings


Book Description

This state-of-the-art report describes various facets of the human response to wind-induced motion in tall buildings and identifies design strategies to mitigate the effects of such motion on building occupants.
















Strategies for Mitigating Wind-induced Motion in Tall Buildings Through Aerodynamic and Damping Modifications


Book Description

The advent of modern structural systems, spurred by advances in construction methodology and high strength materials, has driven the height of modern skyscrapers beyond what was once deemed possible. Although science and technology has been able to increase the strength of building materials such as steel and concrete, their material stiffness has remained virtually unchanged. The end result is a wave of taller, slender and more flexible skyscrapers that are very susceptible to wind-induced excitations. Ever mindful of the fact that human comfort levels are affected by perceived structural responses, engineers must employ various strategies to satisfy serviceability constraints. This thesis presents an overview, in addition to successful applications, of the various aerodynamic and damping modifications that are used to control wind-induced motion in tall buildings. Finally, a modified gyrostabilizer, akin to those used in luxury yachts, is proposed as a possible active control mechanism. The feasibility of this device was studied using simple statics and rigid body dynamics.




Vibration Analysis and Control in Mechanical Structures and Wind Energy Conversion Systems


Book Description

This book focuses on recent and innovative methods on vibration analysis, system identification, and diverse control design methods for both wind energy conversion systems and vibrating systems. Advances on both theoretical and experimental studies about analysis and control of oscillating systems in several engineering disciplines are discussed. Various control devices are synthesized and implemented for vibration attenuation tasks. The book is addressed to researchers and practitioners on the subject, as well as undergraduate and postgraduate students and other experts and newcomers seeking more information about the state of the art, new challenges, innovative solutions, and new trends and developments in these areas. The six chapters of the book cover a wide range of interesting issues related to modeling, vibration control, parameter identification, active vehicle suspensions, tuned vibration absorbers, electronically controlled wind energy conversion systems, and other relevant case studies.







Tall Buildings


Book Description

The structural challenges of building 800 metres into the sky are substantial, and include several factors which do not affect low-rise construction. This book focusses on these areas specifically to provide the architectural and structural knowledge which must be taken into account in order to design tall buildings successfully. In presenting examples of steel, reinforced concrete, and composite structural systems for such buildings, it is shown that wind load has a very important effect on the architectural and structural design. The aerodynamic approach to tall buildings is considered in this context, as is earthquake induced lateral loading. Case studies of some of the world’s most iconic buildings, illustrated with full colour photographs, structural plans and axonometrics, will bring to life the design challenges which they presented to architects and structural engineers. The Empire State Building, the Burj Khalifa, Taipei 101 and the HSB Turning Torso are just a few examples of the buildings whose real-life specifications are used to explain and illustrate core design principles, and their subsequent effect on the finished structure.