Renewable Energy Forecasting


Book Description

Renewable Energy Forecasting: From Models to Applications provides an overview of the state-of-the-art of renewable energy forecasting technology and its applications. After an introduction to the principles of meteorology and renewable energy generation, groups of chapters address forecasting models, very short-term forecasting, forecasting of extremes, and longer term forecasting. The final part of the book focuses on important applications of forecasting for power system management and in energy markets. Due to shrinking fossil fuel reserves and concerns about climate change, renewable energy holds an increasing share of the energy mix. Solar, wind, wave, and hydro energy are dependent on highly variable weather conditions, so their increased penetration will lead to strong fluctuations in the power injected into the electricity grid, which needs to be managed. Reliable, high quality forecasts of renewable power generation are therefore essential for the smooth integration of large amounts of solar, wind, wave, and hydropower into the grid as well as for the profitability and effectiveness of such renewable energy projects. - Offers comprehensive coverage of wind, solar, wave, and hydropower forecasting in one convenient volume - Addresses a topic that is growing in importance, given the increasing penetration of renewable energy in many countries - Reviews state-of-the-science techniques for renewable energy forecasting - Contains chapters on operational applications




Forecasting in Mathematics


Book Description

Mathematical probability and statistics are an attractive, thriving, and respectable part of mathematics. Some mathematicians and philosophers of science say they are the gateway to mathematics’ deepest mysteries. Moreover, mathematical statistics denotes an accumulation of mathematical discussions connected with efforts to most efficiently collect and use numerical data subject to random or deterministic variations. Currently, the concept of probability and mathematical statistics has become one of the fundamental notions of modern science and the philosophy of nature. This book is an illustration of the use of mathematics to solve specific problems in engineering, statistics, and science in general.




Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction


Book Description

Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction provides an up-to- date overview on the broad area of wind generation and forecasting, with a focus on the role and need of Machine Learning in this emerging field of knowledge. Various regression models and signal decomposition techniques are presented and analyzed, including least-square, twin support and random forest regression, all with supervised Machine Learning. The specific topics of ramp event prediction and wake interactions are addressed in this book, along with forecasted performance. Wind speed forecasting has become an essential component to ensure power system security, reliability and safe operation, making this reference useful for all researchers and professionals researching renewable energy, wind energy forecasting and generation.




Artificial Intelligence for Renewable Energy Systems


Book Description

ARTIFICIAL INTELLIGENCE FOR RENEWABLE ENERGY SYSTEMS Renewable energy systems, including solar, wind, biodiesel, hybrid energy, and other relevant types, have numerous advantages compared to their conventional counterparts. This book presents the application of machine learning and deep learning techniques for renewable energy system modeling, forecasting, and optimization for efficient system design. Due to the importance of renewable energy in today’s world, this book was designed to enhance the reader’s knowledge based on current developments in the field. For instance, the extraction and selection of machine learning algorithms for renewable energy systems, forecasting of wind and solar radiation are featured in the book. Also highlighted are intelligent data, renewable energy informatics systems based on supervisory control and data acquisition (SCADA); and intelligent condition monitoring of solar and wind energy systems. Moreover, an AI-based system for real-time decision-making for renewable energy systems is presented; and also demonstrated is the prediction of energy consumption in green buildings using machine learning. The chapter authors also provide both experimental and real datasets with great potential in the renewable energy sector, which apply machine learning (ML) and deep learning (DL) algorithms that will be helpful for economic and environmental forecasting of the renewable energy business. Audience The primary target audience includes research scholars, industry engineers, and graduate students working in renewable energy, electrical engineering, machine learning, information & communication technology.




Physical Approach to Short-Term Wind Power Prediction


Book Description

The effective integration of wind energy into the overall electricity supply is a technical and economical challenge because the availability of wind power is determined by fluctuating meteorological conditions. This book offers an approach to the ultimate goal of the short-term prediction of the power output of winds farms. Starting from basic aspects of atmospheric fluid dynamics, the authors discuss the structure of winds fields, the available forecast systems and the handling of the intrinsic, weather-dependent uncertainties in the regional prediction of the power generated by wind turbines. This book addresses scientists and engineers working in wind energy related R and D and industry, as well as graduate students and nonspecialists researchers in the fields of atmospheric physics and meteorology.




Advances in Sustainable Energy


Book Description

This book reveals key challenges to ensuring the secure and sustainable production and use of energy resources, and provides corresponding solutions. It discusses the latest advances in renewable energy generation, and includes studies on climate change and social sustainability. In turn, the book goes beyond theory and describes practical challenges and solutions associated with energy and sustainability. In particular, it addresses: · renewable energy conversion technologies; · transmission, storage and consumption; · green buildings and the green economy; and · waste and recycling. The book presents the current state of knowledge on renewable energy and sustainability, supported by detailed examples and case studies, making it not only a cutting-edge source of information for experts and researchers in the field, but also an educational tool for related undergraduate and graduate courses.




Advances in Computational Intelligence


Book Description

This two-volume set LNCS 6691 and 6692 constitutes the refereed proceedings of the 11th International Work-Conference on Artificial Neural Networks, IWANN 2011, held in Torremolinos-Málaga, Spain, in June 2011. The 154 revised papers were carefully reviewed and selected from 202 submissions for presentation in two volumes. The first volume includes 69 papers organized in topical sections on mathematical and theoretical methods in computational intelligence; learning and adaptation; bio-inspired systems and neuro-engineering; hybrid intelligent systems; applications of computational intelligence; new applications of brain-computer interfaces; optimization algorithms in graphic processing units; computing languages with bio-inspired devices and multi-agent systems; computational intelligence in multimedia processing; and biologically plausible spiking neural processing.




Advances on P2P, Parallel, Grid, Cloud and Internet Computing


Book Description

This book presents the latest research findings, innovative research results, methods and development techniques related to P2P, grid, cloud and Internet computing from both theoretical and practical perspectives. It also reveals the synergies among such large-scale computing paradigms. P2P, grid, cloud and Internet computing technologies have rapidly become established as breakthrough paradigms for solving complex problems by enabling aggregation and sharing of an increasing variety of distributed computational resources at large scale. Grid computing originated as a paradigm for high-performance computing, as an alternative to expensive supercomputers through different forms of large-scale distributed computing. P2P computing emerged as a new paradigm after client–server and web-based computing and has proved useful in the development of social networking, B2B (business to business), B2C (business to consumer), B2G (business to government), and B2E (business to employee). Cloud computing has been defined as a “computing paradigm where the boundaries of computing are determined by economic rationale rather than technical limits,” and it has fast become a computing paradigm with applicability and adoption in all application domains and which provides utility computing at a large scale. Lastly, Internet computing is the basis of any large-scale distributed computing paradigms; it has developed into a vast area of flourishing fields with enormous impact on today’s information societies, and serving as a universal platform comprising a large variety of computing forms such as grid, P2P, cloud and mobile computing.




Wind Energy Explained


Book Description

Wind energy’s bestselling textbook- fully revised. This must-have second edition includes up-to-date data, diagrams, illustrations and thorough new material on: the fundamentals of wind turbine aerodynamics; wind turbine testing and modelling; wind turbine design standards; offshore wind energy; special purpose applications, such as energy storage and fuel production. Fifty additional homework problems and a new appendix on data processing make this comprehensive edition perfect for engineering students. This book offers a complete examination of one of the most promising sources of renewable energy and is a great introduction to this cross-disciplinary field for practising engineers. “provides a wealth of information and is an excellent reference book for people interested in the subject of wind energy.” (IEEE Power & Energy Magazine, November/December 2003) “deserves a place in the library of every university and college where renewable energy is taught.” (The International Journal of Electrical Engineering Education, Vol.41, No.2 April 2004) “a very comprehensive and well-organized treatment of the current status of wind power.” (Choice, Vol. 40, No. 4, December 2002)




Renewable Energy: Forecasting and Risk Management


Book Description

Gathering selected, revised and extended contributions from the conference ‘Forecasting and Risk Management for Renewable Energy FOREWER’, which took place in Paris in June 2017, this book focuses on the applications of statistics to the risk management and forecasting problems arising in the renewable energy industry. The different contributions explore all aspects of the energy production chain: forecasting and probabilistic modelling of renewable resources, including probabilistic forecasting approaches; modelling and forecasting of wind and solar power production; prediction of electricity demand; optimal operation of microgrids involving renewable production; and finally the effect of renewable production on electricity market prices. Written by experts in statistics, probability, risk management, economics and electrical engineering, this multidisciplinary volume will serve as a reference on renewable energy risk management and at the same time as a source of inspiration for statisticians and probabilists aiming to work on energy-related problems.