Working Guide to Process Equipment, Third Edition


Book Description

Diagnose and Troubleshoot Problems in Chemical Process Equipment with This Updated Classic! Chemical engineers and plant operators can rely on the Third Edition of A Working Guide to Process Equipment for the latest diagnostic tips, practical examples, and detailed illustrations for pinpointing trouble and correcting problems in chemical process equipment. This updated classic contains new chapters on Control Valves, Cooling Towers, Waste Heat Boilers, Catalytic Effects, Fundamental Concepts of Process Equipment, and Process Safety. Filled with worked-out calculations, the book examines everything from trays, reboilers, instruments, air coolers, and steam turbines...to fired heaters, refrigeration systems, centrifugal pumps, separators, and compressors. The authors simplify complex issues and explain the technical issues needed to solve all kinds of equipment problems. Comprehensive and clear, the Third Edition of A Working Guide to Process Equipment features: Guidance on diagnosing and troubleshooting process equipment problems Explanations of how theory applies to real-world equipment operations Many useful tips, examples, illustrations, and worked-out calculations New to this edition: Control Valves, Cooling Towers, Waste Heat Boilers, Catalytic Effects, and Process Safety Inside this Renowned Guide to Solving Process Equipment Problems • Trays • Tower Pressure • Distillation Towers • Reboilers • Instruments • Packed Towers • Steam and Condensate Systems • Bubble Point and Dew Point • Steam Strippers • Draw-Off Nozzle Hydraulics • Pumparounds and Tower Heat Flows • Condensers and Tower Pressure Control • Air Coolers • Deaerators and Steam Systems • Vacuum Systems • Steam Turbines • Surface Condensers • Shell-and-Tube Heat Exchangers • Fire Heaters • Refrigeration Systems • Centrifugal Pumps • Separators • Compressors • Safety • Corrosion • Fluid Flow • Computer Modeling and Control • Field Troubleshooting Process Problems




Process Equipment Malfunctions: Techniques to Identify and Correct Plant Problems


Book Description

A PRACTICAL GUIDE TO TROUBLESHOOTING PROCESS EQUIPMENT MALFUNCTIONS Process Equipment Malfunctions offers proven techniques for finding and fixing process plant problems and contains details on failure identification. Diagnostic tips, examples, and illustrations help to pinpoint and correct faults in chemical process and petroleum refining equipment. Complex math has been omitted. An essential resource for plant operators and process engineers, this book is based on the author's long career in field troubleshooting process problems. COVERAGE INCLUDES: Distillation tray malfunctions Packed tower problems Distillation tower pressure and composition control Fractionator product stripping Pumparounds Reboiled and steam side strippers Inspecting tower internals Process reboilers--thermosyphon circulation Heat exchangers Condenser limitations Air coolers Cooling water systems Steam condensate collection systems Steam quality problems Level control problems Process plant corrosion and fouling Vapor-liquid separation vessels Hydrocarbon-water separation and desalters Fired heaters--draft and excess O2 Disabling safety systems Vacuum systems and steam jets Vacuum surface condensers Centrifugal pump limitations Steam turbine drivers Centrifugal compressors Reciprocating compressors




Structural Analysis and Design of Process Equipment


Book Description

Still the only book offering comprehensive coverage of the analysis and design of both API equipment and ASME pressure vessels This edition of the classic guide to the analysis and design of process equipment has been thoroughly updated to reflect current practices as well as the latest ASME Codes and API standards. In addition to covering the code requirements governing the design of process equipment, the book supplies structural, mechanical, and chemical engineers with expert guidance to the analysis and design of storage tanks, pressure vessels, boilers, heat exchangers, and related process equipment and its associated external and internal components. The use of process equipment, such as storage tanks, pressure vessels, and heat exchangers has expanded considerably over the last few decades in both the petroleum and chemical industries. The extremely high pressures and temperatures involved with the processes for which the equipment is designed makes it potentially very dangerous to property and life if the equipment is not designed and manufactured to an exacting standard. Accordingly, codes and standards such as the ASME and API were written to assure safety. Still the only guide covering the design of both API equipment and ASME pressure vessels, Structural Analysis and Design of Process Equipment, 3rd Edition: Covers the design of rectangular vessels with various side thicknesses and updated equations for the design of heat exchangers Now includes numerical vibration analysis needed for earthquake evaluation Relates the requirements of the ASME codes to international standards Describes, in detail, the background and assumptions made in deriving many design equations underpinning the ASME and API standards Includes methods for designing components that are not covered in either the API or ASME, including ring girders, leg supports, and internal components Contains procedures for calculating thermal stresses and discontinuity analysis of various components Structural Analysis and Design of Process Equipment, 3rd Edition is an indispensable tool-of-the-trade for mechanical engineers and chemical engineers working in the petroleum and chemical industries, manufacturing, as well as plant engineers in need of a reference for process equipment in power plants, petrochemical facilities, and nuclear facilities.




Troubleshooting Vacuum Systems


Book Description

Vacuum systems are in wide spread use in the petrochemical plants, petroleum refineries and power generation plants. The existing texts on this subject are theoretical in nature and only deal with how the equipment functions when in good mechanical conditions, from the viewpoint of the equipment vendor. Also, the existing texts fail to consider the interaction of the vacuum system with the process equipment it serves and the variability of the motive steam conditions, change in cooling water temperature condenser fouling and erosion of the ejectors. Here are some of the many questions answered in this groundbreaking volume: Why does my first stage jet make a surging sound during hot weather? Why does the vacuum suddenly break? I've seen moisture condensing on the jet's body! What’s causing that? Why do I have to steam-out the drain legs from our condensers? Superheated steam is making our vacuum worse. Is this normal? How can I locate and measure air leaks? Reducing the steam pressure to my jets improves vacuum. But why? I can't pull the pre-condenser bundle. The shell side is fouling. What should I do? We're not getting our normal horsepower from our steam turbine. Could this be a jet problem? Raising the seal drum level improves vacuum! Is there an explanation for this? Our turbine exhaust steam pressure to our surface condenser has doubled in the last two years. What should we do? Restricting cooling water flow from our elevated condensers improves vacuum! Is this possible? What's a converging-diverging ejector all about? What's the difference between a barometric condenser and a surface condenser? Which is better?




Process Plant Equipment


Book Description

“Process Plant Equipment Book is another great publication from Wiley as a reference book for final year students as well as those who will work or are working in chemical production plants and refinery...” -Associate Prof. Dr. Ramli Mat, Deputy Dean (Academic), Faculty of Chemical Engineering, Universiti Teknologi Malaysia “...give[s] readers access to both fundamental information on process plant equipment and to practical ideas, best practices and experiences of highly successful engineers from around the world... The book is illustrated throughout with numerous black & white photos and diagrams and also contains case studies demonstrating how actual process plants have implemented the tools and techniques discussed in the book. An extensive list of references enables readers to explore each individual topic in greater depth...” –Stainless Steel World and Valve World, November 2012 Discover how to optimize process plant equipment, from selection to operation to troubleshooting From energy to pharmaceuticals to food, the world depends on processing plants to manufacture the products that enable people to survive and flourish. With this book as their guide, readers have the information and practical guidelines needed to select, operate, maintain, control, and troubleshoot process plant equipment so that it is efficient, cost-effective, and reliable throughout its lifetime. Following the authors' careful explanations and instructions, readers will find that they are better able to reduce downtime and unscheduled shutdowns, streamline operations, and maximize the service life of processing equipment. Process Plant Equipment: Operation, Control, and Reliability is divided into three sections: Section One: Process Equipment Operations covers such key equipment as valves, pumps, cooling towers, conveyors, and storage tanks Section Two: Process Plant Reliability sets forth a variety of tested and proven tools and methods to assess and ensure the reliability and mechanical integrity of process equipment, including failure analysis, Fitness-for-Service assessment, engineering economics for chemical processes, and process component function and performance criteria Section Three: Process Measurement, Control, and Modeling examines flow meters, process control, and process modeling and simulation Throughout the book, numerous photos and diagrams illustrate the operation and control of key process equipment. There are also case studies demonstrating how actual process plants have implemented the tools and techniques discussed in the book. At the end of each chapter, an extensive list of references enables readers to explore each individual topic in greater depth. In summary, this text offers students, process engineers, and plant managers the expertise and technical support needed to streamline and optimize the operation of process plant equipment, from its initial selection to operations to troubleshooting.




Working Guide to Process Equipment


Book Description

Working Guide to Process Equipment, 2nd Ed. carefully and clearly explains all the basic technical issues that you need to know to trouble-shoot most process equipment problems. This guide contains a wealth of useful diagnostic tips, worked-out calculations, practical examples, and informative illustrations to help you quickly pinpoint trouble and repair typical malfunctions in: Trayed and packed distillation towers; Natural and forced reboilers; Partial and total condensers; Steam systems and deaerators; Vaccuum systems; Fired heaters; Shell and tube heat exchangers; Centrifugal compressors; Gas turbines and reciprocating engines; Centrifugal pumps and motor drivers. In no time at all, this essential problem-solving manual will become your most trusted on-the-job tool for dealing effectively with costly equipment malfunctions.




Process Engineering for a Small Planet


Book Description

Methods for more planet-friendly process engineering Our earth is just one big, complex Process Facility with limited air, water, and mineral resources. It responds to a number of process variables—among them, humanity and the environmental effects of our carbon consumption. What can professionals in the Hydrocarbon Process Industry do to retard environmental degradation? Rather than looking to exotic technology for solutions, Process Engineering for a Small Planet details ready-at-hand methods that the process engineer can employ to help combat the environmental crisis. Drawing from the author's professional experience working with petroleum refineries petroleum refineries, petrochemical plants, and natural gas wells, this handbook explains how to operate and retrofit process facilities to: Reuse existing process equipment Save energy Reduce greenhouse gas emissions Expand plant capacity without installing new equipment Reduce corrosion and equipment failures Covering topics from expanding fractionator and compressor capacity and vacuum tower heater expansion to minimizing process water consumption and increasing centrifugal pump capacity, Process Engineering for a Small Planet offers big ideas for saving our small planet.




Process Equipment and Plant Design


Book Description

Process Equipment and Plant Design: Principles and Practices takes a holistic approach towards process design in the chemical engineering industry, dealing with the design of individual process equipment and its configuration as a complete functional system. Chapters cover typical heat and mass transfer systems and equipment included in a chemical engineering curriculum, such as heat exchangers, heat exchanger networks, evaporators, distillation, absorption, adsorption, reactors and more. The authors expand on additional topics such as industrial cooling systems, extraction, and topics on process utilities, piping and hydraulics, including instrumentation and safety basics that supplement the equipment design procedure and help to arrive at a complete plant design. The chapters are arranged in sections pertaining to heat and mass transfer processes, reacting systems, plant hydraulics and process vessels, plant auxiliaries, and engineered safety as well as a separate chapter showcasing examples of process design in complete plants. This comprehensive reference bridges the gap between industry and academia, while exploring best practices in design, including relevant theories in process design making this a valuable primer for fresh graduates and professionals working on design projects in the industry. - Serves as a consolidated resource for process and plant design, including process utilities and engineered safety - Bridges the gap between industry and academia by including practices in design and summarizing relevant theories - Presents design solutions as a complete functional system and not merely the design of major equipment - Provides design procedures as pseudo-code/flow-chart, along with practical considerations




Understanding Process Equipment for Operators and Engineers


Book Description

Understanding Process Equipment for Operators and Engineers explains how process equipment functions. As problems often arise in plants that must be solved by unit engineers, this book offers successful solutions and methods for their implementation. The concepts explained are based on Norm Lieberman's personal, hands-on experience. Like you, Norm attended a university and was exposed to technical seminars which did not always provide the needed solutions. In this text, you will learn the functioning of a variety of equipment types, including Fired Heater Draft, Centrifugal Pump Head, Distillation Tray Efficiency, Vacuum Jets, Recip Compressors, Steam Turbines, Thermosyphon Circulation Reboilers and Air Cooler. - Includes methods and procedures on how to make field measurements - Outlines fire heater principles and operation and how they develop draft - Describes distillation column operation and methods to increase their efficiency - Includes computer modeling and provides use case examples




Chemical and Process Plant Commissioning Handbook


Book Description

The Chemical and Process Plant Commissioning Handbook, winner of the 2012 Basil Brennan Medal from the Institution of Chemical Engineers, is a guide to converting a newly constructed plant or equipment into a fully integrated and operational process unit. Good commissioning is based on a disciplined, systematic and proven methodology and approach that achieve results in the safest, most efficient, cost effective and timely manner. The book is supported by detailed, proven and effective commission templates, plus extensive commissioning scenarios that enable the reader to learn the context of good commissioning practice from an experienced commissioning manager. It focuses on the critical safety assessment and inspection regimes necessary to ensure that new plants are compliant with OSHA and environmental requirements. Martin Killcross has brought together the theory of textbooks and technical information obtained from sales literature, in order to provide engineers with what they need to know before initiating talks with vendors regarding equipment selection. - Unique information from a respected, global commissioning manager: delivers the know-how to succeed for anyone commissioning new plant or equipment - Comes with online commissioning process templates that make this title a working tool kit as well as a key reference - Extensive examples of successful commissioning processes with step-by-step guidance enable readers to understand the function and performance of the wide range of tasks required in the commissioning process