Proceedings


Book Description




Melt Inclusions


Book Description







Melt Inclusions in Volcanic Systems


Book Description

Melt inclusions provide a unique record of the physical and chemical processes operating in active magma chambers associated with volcanic systems. This book includes a summary of modern techniques used to study and interpret melt inclusions in volcanic rocks, as well as descriptive studies of specific volcanoes. These various studies document the enormous potential for melt inclusions to provide a window into the dynamics of active magma chambers.'Melt Inclusions in Volcanic Systems' gives the most up-to-date summary of research on the application of melt inclusions in studies of active and fossil volcanic systems, as well as suggestions for future research in this area.







Minerals, Inclusions And Volcanic Processes


Book Description

Volume 69 of Reviews in Mineralogy and Geochemistry covers the fundamental issues of volcanology: At what depths are eruptions triggered, and over what time scales? Where and why do magmas coalesce before ascent? If magmas stagnate for thousands of years, what forces are responsible for initiating final ascent, or the degassing processes that accelerate upward motion? To the extent that we can answer these questions, we move towards formulating tests of mechanistic models of volcanic eruptions (e.g., Wilson, 1980; Slezin, 2003; Scandone et al., 2007), and hypotheses of the tectonic controls on magma transport (e.g., ten Brink and Brocher, 1987; Takada, 1994; Putirka and Busby, 2007). Our goal, in part, is to review how minerals can be used to understand volcanic systems and the processes that shape them; we also hope that this work will spur new and integrated studies of volcanic systems.




Volcano Deformation


Book Description

Volcanoes and eruptions are dramatic surface man telemetry and processing, and volcano-deformation ifestations of dynamic processes within the Earth, source models over the past three decades. There has mostly but not exclusively localized along the been a virtual explosion of volcano-geodesy studies boundaries of Earth's relentlessly shifting tectonic and in the modeling and interpretation of ground plates. Anyone who has witnessed volcanic activity deformation data. Nonetheless, other than selective, has to be impressed by the variety and complexity of brief summaries in journal articles and general visible eruptive phenomena. Equally complex, works on volcano-monitoring and hazards mitiga however, if not even more so, are the geophysical, tion (e. g. , UNESCO, 1972; Agnew, 1986; Scarpa geochemical, and hydrothermal processes that occur and Tilling, 1996), a modern, comprehensive treat underground - commonly undetectable by the ment of volcano geodesy and its applications was human senses - before, during, and after eruptions. non-existent, until now. Experience at volcanoes worldwide has shown that, In the mid-1990s, when Daniel Dzurisin (DZ to at volcanoes with adequate instrumental monitor friends and colleagues) was serving as the Scientist ing, nearly all eruptions are preceded and accom in-Charge of the USGS Cascades Volcano Observa panied by measurable changes in the physical and tory (CVO), I first learned of his dream to write a (or) chemical state of the volcanic system. While book on volcano geodesy.







Geochemistry and Geophysics of Active Volcanic Lakes


Book Description

Volcanoes sometimes host a lake at the Earth's surface. These lakes are the surface expressions of a reservoir, often termed a hydrothermal system, in highly fractured, permeable and porous media where fluids circulate. They can become monitoring targets since they integrate the heat flux discharged by an underlying magma body and condense some volcanic gases. Since they trap volcanic heat and gases, they are excellent tools to provide additional information about the status of a volcano and volcanic lake-related hazards. This Special Publication comes at an exciting time for the volcanic lake community. It brings together scientific papers, which include studies of their structure, hydrogeological modelling, long-term multi-disciplinary monitoring efforts, as well as a number of innovative methods of sampling, data acquisition and in situ and laboratory experiments. Several papers challenge long-established paradigms and introduce new concepts and terminologies. This collection of papers will be a useful reference for researchers dealing with volcanic lakes and more generally with hydrothermal systems, phreatic/hydrothermal eruptions and wet volcanoes.