X-Ray Fluorescence Spectrometry and Related Techniques


Book Description

X-ray fluorescence spectrometry (XRF) is a well-established analytical technique for qualitative and quantitative elemental analysis of a wide variety of routine quality control and research samples. Among its many desirable features, it delivers true multi-element character analysis, acceptable speed and economy, easy of automation, and the capacity to analyze solid samples. This remarkable contribution to this field provides a comprehensive and up-to-date account of basic principles, recent developments, instrumentation, sample preparation procedures, and applications of XRF analysis. If you are a professional in materials science, analytic chemistry, or physics, you will benefit from not only the review of basics, but also the newly developed technologies with XRF. Those recent technological advances, including the design of low-power micro- focus tubes and novel X-ray optics and detectors, have made it possible to extend XRF to the analysis of low-Z elements and to obtain 2D or 3D information on a micrometer-scale. And, the recent development and commercialization of bench top and portable instrumentation, offering extreme simplicity of operation in a low-cost design, have extended the applications of XRF to many more analytical problems.




X-Ray Fluorescence Spectrometry


Book Description

X-Ray Fluorescence Spectrometry, Ron Jenkins Written by the principal scientist for JCPDS, the International Centre for Diffraction Data, Swarthmore, Pennsylvania, this book focuses on the scientific and technological developments achieved in the field during the past decade. It offers comprehensive coverage of all crucial topics, including: the properties and uses of X-ray emission spectrometry in material analysis; its industrial applications; X-ray diffraction; instrumentation for X-ray fluorescence spectrometry; a comparison of wavelength and energy dispersive spectrometers; and use of X-ray spectrometry for qualitative analysis.




Portable X-ray Fluorescence Spectrometry


Book Description

This book brings together the knowledge and expertise of internationally recognised scientists with practical experience of in situ analysis using portable X-ray fluorescence technology.




X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology


Book Description

Since the 1960s, x-ray fluorescence spectrometry (XRF), both wavelength and energy-dispersive have served as the workhorse for non-destructive and destructive analyses of archaeological materials. Recently eclipsed by other instrumentation such as LA-ICP-MS, XRF remains the mainstay of non-destructive chemical analyses in archaeology, particularly for volcanic rocks, and most particularly for obsidian. In a world where heritage and repatriation issues drive archaeological method and theory, XRF remains an important tool for understanding the human past, and will remain so for decades to come. Currently, there is no comprehensive book in XRF applications in archaeology at a time when the applications of portable XRF and desktop XRF instrumentation are exploding particularly in anthropology and archaeology departments worldwide. The contributors to this volume are the experts in the field, and most are at the forefront of the newest applications of XRF to archaeological problems. It covers all relevant aspects of the field for those using the newest XRF technologies to deal with very current issues in archaeology.




Handbook of Practical X-Ray Fluorescence Analysis


Book Description

X-Ray fluorescence analysis is an established technique for non-destructive elemental materials analysis. This book gives a user-oriented practical guidance to the application of this method. The book gives a survey of the theoretical fundamentals, analytical instrumentation, software for data processing, various excitation regimes including gracing incidents and microfocus measurements, quantitative analysis, applications in routine and micro analysis, mineralogy, biology, medicine, criminal investigations, archeology, metallurgy, abrasion, microelectronics, environmental air and water analysis. This book is the bible of X-Ray fluorescence analysis. It gives the basic knowledge on this technique, information on analytical equipment and guides the reader to the various applications. It appeals to researchers, analytically active engineers and advanced students.




X-Ray Fluorescence Spectroscopy for Laboratory Applications


Book Description

Provides comprehensive coverage on using X-ray fluorescence for laboratory applications This book focuses on the practical aspects of X-ray fluorescence (XRF) spectroscopy and discusses the requirements for a successful sample analysis, such as sample preparation, measurement techniques and calibration, as well as the quality of the analysis results. X-Ray Fluorescence Spectroscopy for Laboratory Applications begins with a short overview of the physical fundamentals of the generation of X-rays and their interaction with the sample material, followed by a presentation of the different methods of sample preparation in dependence on the quality of the source material and the objective of the measurement. After a short description of the different available equipment types and their respective performance, the book provides in-depth information on the choice of the optimal measurement conditions and the processing of the measurement results. It covers instrument types for XRF; acquisition and evaluation of X-Ray spectra; analytical errors; analysis of homogeneous materials, powders, and liquids; special applications of XRF; process control and automation. An important resource for the analytical chemist, providing concrete guidelines and support for everyday analyses Focuses on daily laboratory work with commercially available devices Offers a unique compilation of knowledge and best practices from equipment manufacturers and users Covers the entire work process: sample preparation, the actual measurement, data processing, assessment of uncertainty, and accuracy of the obtained results X-Ray Fluorescence Spectroscopy for Laboratory Applications appeals to analytical chemists, analytical laboratories, materials scientists, environmental chemists, chemical engineers, biotechnologists, and pharma engineers.




Handheld XRF for Art and Archaeology


Book Description

This volume focuses specifically on the applications, possibilities, and limitations of handheld X-ray fluorescence devices in art conservation and archaeology.




Portable Spectroscopy and Spectrometry, Applications


Book Description

The most comprehensive resource available on the many applications of portable spectrometers, including material not found in any other published work Portable Spectroscopy and Spectrometry: Volume Two is an authoritative and up-to-date compendium of the diverse applications for portable spectrometers across numerous disciplines. Whereas Volume One focuses on the specific technologies of the portable spectrometers themselves, Volume Two explores the use of portable instruments in wide range of fields, including pharmaceutical development, clinical research, food analysis, forensic science, geology, astrobiology, cultural heritage and archaeology. Volume Two features contributions by a multidisciplinary team of experts with hands-on experience using portable instruments in their respective areas of expertise. Organized both by instrumentation type and by scientific or technical discipline, 21 detailed chapters cover various applications of portable ion mobility spectrometry (IMS), infrared and near-infrared (NIR) spectroscopy, Raman and x-ray fluorescence (XRF) spectroscopy, smartphone spectroscopy, and many others. Filling a significant gap in literature on the subject, the second volume of Portable Spectroscopy and Spectrometry: Features a significant amount of content published for the first time, or not available in existing literature Brings together work by authors with assorted backgrounds and fields of study Discusses the central role of applications in portable instrument development Covers the algorithms, calibrations, and libraries that are of critical importance to successful applications of portable instruments Includes chapters on portable spectroscopy applications in areas such as the military, agriculture and feed, hazardous materials (HazMat), art conservation, and environmental science Portable Spectroscopy and Spectrometry: Volume Two is an indispensable resource for developers of portable instruments in universities, research institutes, instrument companies, civilian and government purchasers, trainers, operators of portable instruments, and educators and students in portable spectroscopy courses.




Quantitative X-Ray Spectrometry, Second Edition,


Book Description

This work covers important aspects of X-ray spectrometry, from basic principles to the selection of instrument parameters and sample preparation. This edition explicates the use of combined X-ray fluorescence and X-ray diffraction data, and features new applications in environmental studies, forensic science, archeometry and the analysis of metals and alloys, minerals and ore, ceramic materials, catalysts and trace metals.;This work is intended for spectroscopists, analytical chemists, materials scientists, experimental physicists, mineralogists, biologists, geologists and graduate-level students in these disciplines.




Laboratory Micro-X-Ray Fluorescence Spectroscopy


Book Description

Micro-X-ray fluorescence offers the possibility for a position- sensitive and non-destructive analysis that can be used for the analysis of non-homogeneous materials and layer systems. This analytical technique has shown a dynamic development in the last 15 years and is used for the analysis of small particles, inclusions, of elemental distributions for a wide range of different applications both in research and quality control. The first experiments were performed on synchrotrons but there is a requirement for laboratory instruments which offers a fast and immediate access for analytical results. The book discuss the main components of a μ-XRF instrument and the different measurement modes, it gives an overview about the various instruments types, considers the special requirements for quantification of non-homogeneous materials and presents a wide range of application for single point and multi-point analysis as well as for distribution analysis in one, two and three dimensions.