X-ray Standing Wave Technique, The: Principles And Applications


Book Description

The X-ray standing wave (XSW) technique is an X-ray interferometric method combining diffraction with a multitude of spectroscopic techniques. It is extremely powerful for obtaining information about virtually all properties of surfaces and interfaces on the atomic scale. However, as with any other technique, it has strengths and limitations. The proper use and necessary understanding of this method requires knowledge in quite different fields of physics and technology. This volume presents comprehensively the theoretical background, technical requirements and distinguished experimental highlights of the technique. Containing contributions from the most prominent experts of the technique, such as Andre Authier, Boris Batterman, Michael J Bedzyk, Jene Golovchenko, Victor Kohn, Michail Kovalchuk, Gerhard Materlik and D Phil Woodruff, the book equips scientists with all the necessary information and knowledge to understand and use the XSW technique in practically all applications.




The X-ray Standing Wave Technique


Book Description

The X-ray standing wave (XSW) technique is an X-ray interferometric method combining diffraction with a multitude of spectroscopic techniques. It is extremely powerful for obtaining information about virtually all properties of surfaces and interfaces on the atomic scale. However, as with any other technique, it has strengths and limitations. The proper use and necessary understanding of this method requires knowledge in quite different fields of physics and technology. This volume presents comprehensively the theoretical background, technical requirements and distinguished experimental highlights of the technique. Containing contributions from the most prominent experts of the technique, such as Andre Authier, Boris Batterman, Michael J Bedzyk, Jene Golovchenko, Victor Kohn, Michail Kovalchuk, Gerhard Materlik and D Phil Woodruff, the book equips scientists with all the necessary information and knowledge to understand and use the XSW technique in practically all applications.




Variable Length-Scale Studies at Interfaces with X-Ray Standing Waves


Book Description

The principles and applications of the x-ray standing wave technique are described. Emphasis is placed on its use as a variable length-scale probe for the study of structure composition and distribution of interfacial species especially at solid/liquid interfaces. Keywords: X rays, Synchrotron radiation, Standing waves, Solid liquid interfaces. (jhd).




Total-Reflection X-Ray Fluorescence Analysis and Related Methods


Book Description

Explores the uses of TXRF in micro- and trace analysis, and in surface- and near-surface-layer analysis • Pinpoints new applications of TRXF in different fields of biology, biomonitoring, material and life sciences, medicine, toxicology, forensics, art history, and archaeometry • Updated and detailed sections on sample preparation taking into account nano- and picoliter techniques • Offers helpful tips on performing analyses, including sample preparations, and spectra recording and interpretation • Includes some 700 references for further study




Surface Structure Determination by LEED and X-rays


Book Description

Discover exciting new developments and applications of LEED and X-ray diffraction, alongside detailed introductory material.







Basic Concepts of X-Ray Diffraction


Book Description

Authored by a university professor deeply involved in X-ray diffraction-related research, this textbook is based on his lectures given to graduate students for more than 20 years. It adopts a well-balanced approach, describing basic concepts and experimental techniques, which make X-ray diffraction an unsurpassed method for studying the structure of materials. Both dynamical and kinematic X-ray diffraction is considered from a unified viewpoint, in which the dynamical diffraction in single-scattering approximation serves as a bridge between these two parts. The text emphasizes the fundamental laws that govern the interaction of X-rays with matter, but also covers in detail classical and modern applications, e.g., line broadening, texture and strain/stress analyses, X-ray mapping in reciprocal space, high-resolution X-ray diffraction in the spatial and wave vector domains, X-ray focusing, inelastic and time-resolved X-ray scattering. This unique scope, in combination with otherwise hard-to-find information on analytic expressions for simulating X-ray diffraction profiles in thin-film heterostructures, X-ray interaction with phonons, coherent scattering of Mossbauer radiation, and energy-variable X-ray diffraction, makes the book indispensable for any serious user of X-ray diffraction techniques. Compact and self-contained, this textbook is suitable for students taking X-ray diffraction courses towards specialization in materials science, physics, chemistry, or biology. Numerous clear-cut illustrations, an easy-to-read style of writing, as well as rather short, easily digestible chapters all facilitate comprehension.




X-ray Studies on Electrochemical Systems


Book Description

This book is your graduate level entrance into battery, fuel cell and solar cell research at synchrotron x-ray sources. Materials scientists find numerous examples for the combination of electrochemical experiments with simple and with highly complex x-ray scattering and spectroscopy methods. Physicists and chemists can link applied electrochemistry with fundamental concepts of condensed matter physics, physical chemistry and surface science. Contents: Introduction Molecular Structure and Electronic Structure Crystal Structure and Microstructure Real Space Imaging and Tomography Resonant Methods and Chemical Contrast Variation Surface Sensitive and Volume Sensitive Methods Organic and Bio-Organic Samples Complex Case Studies / Electrochemical In Situ Studies Correlation of Electronic Structure And Conductivity Radiation Damages Background Subtraction X-Ray Physics Nobel Prizes Synchrotron Centers World Electromagnetic Spectrum Kα,Β X-Ray Energies Periodic Table of Elements




Hard X-ray Photoelectron Spectroscopy (HAXPES)


Book Description

This book provides the first complete and up-to-date summary of the state of the art in HAXPES and motivates readers to harness its powerful capabilities in their own research. The chapters are written by experts. They include historical work, modern instrumentation, theory and applications. This book spans from physics to chemistry and materials science and engineering. In consideration of the rapid development of the technique, several chapters include highlights illustrating future opportunities as well.




Encyclopedia of Interfacial Chemistry


Book Description

Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Seven Volume Set summarizes current, fundamental knowledge of interfacial chemistry, bringing readers the latest developments in the field. As the chemical and physical properties and processes at solid and liquid interfaces are the scientific basis of so many technologies which enhance our lives and create new opportunities, its important to highlight how these technologies enable the design and optimization of functional materials for heterogeneous and electro-catalysts in food production, pollution control, energy conversion and storage, medical applications requiring biocompatibility, drug delivery, and more. This book provides an interdisciplinary view that lies at the intersection of these fields. Presents fundamental knowledge of interfacial chemistry, surface science and electrochemistry and provides cutting-edge research from academics and practitioners across various fields and global regions