X-ray waveguide optics


Book Description

Modern x-ray sources and analysis techniques such as lens less imaging combined with phase retrieval algorithms allow for resolving structure sizes in the nanometer range. For this purpose optics have to be employed, ensuring small focal spot dimensions simultaneously with high photon densities. Furthermore, the wave front behind the optics is required to be smooth enabling for high resolution imaging. Combining all these properties, x-ray waveguides are well suited to perform this task, since the intensity distribution behind the guide is restricted in two dimensions serving as a secondary quasi point-source without wave-front aberrations, showing also a high divergence, suitable for resolving fine features. Importantly, the radiation provided by the waveguide reveals a high degree of coherence, required by many imaging techniques. The waveguide itself consists of an air-filled channel embedded in a solid matrix; typical materials are silicon, germanium or quartz. While the entrance area is nano-sized, the channel length is in the millimeter-range, this way posing challenges to fabricate high aspect ratio geometries. Since the functioning of x-ray waveguides is based on the total reflection at small incident angles, the surface roughness of the channel walls must be as low as possible to avoid scattering and hence loss of intensity. To fulfill these demanding conditions, a process scheme involving spin-coating, electron beam lithography, wet development, reactive ion etching and wafer bonding is optimized within this work. To gain deeper insights into the principle of wave guiding finite difference simulations are performed, also opening access for advanced design considerations such as gratings, tapered and curved channels, or beamsplitters, enabling for constructing novel x-ray tools as for example time delay devices or interferometers. Waveguides in all geometries are tested at synchrotron sources, accomplishing new benchmarks in x-ray optical performance. Here, the x-ray beam leaving the channel, propagates out to a pixel array detector in the far-field region. From the recorded data the intensity distribution in the near-field directly behind the waveguide is reconstructed, revealing an outstanding agreement with the simulations and electron micrographs. Since the radiation field of the waveguide is well-characterized and also tunable to meet the requirements of both the measurement setup and the sample, they are suited of a broad field of applications in coherent x-ray imaging.




X-ray Waveguide Optics: Beyond Straight Channels


Book Description

Modern x-ray sources and analysis techniques such as lens less imaging combined with phase retrieval algorithms allow for resolving structure sizes in the nanometerrange. For this purpose optics have to be employed, ensuring small focal spot dimensions simultaneously with high photon densities. Furthermore, the wave front behind the optics is required to be smooth enabling for high-resolution imaging. Combining all these properties, x-ray waveguides are well suited to perform this task, since the intensity distribution behind the guide is restricted in two dimensions serving as a secondary ...




Optimization of Waveguide Optics for Lensless X-ray Imaging


Book Description

Lensless x-ray imaging is a promising method to determine the three-dimensional structure of material science and biological specimens at the nanoscale. The development of this technique is strongly related to the optimization of x-ray optics since the image formation and object reconstruction depend significantly on the properties of the illumination wave-field. Waveguide optics act as quasi-point sources and enable the spatial and coherent filtering of x-ray beams. Up to now, x-ray waveguides were severely limited in transmission and flux, restricting their use to high-contrast test structures with moderate resolution and long accumulation times. To overcome these limitations, a novel waveguide design with an optimized refractive index profile is presented which significantly minimizes the absorption of the modes propagating inside the waveguide. Experimental results along with simulations show that these two-component planar x-ray waveguides provide small beam cross-sections along with a high photon flux at the exit. By a serial arrangement of two waveguide slices an optimized illumination source has been developed for high-resolution microscopy, as demonstrated in proof-of-concept imaging experiments.







Advanced X-ray Multilayer Waveguide Optics


Book Description

The aim of this thesis is to demonstrate that x-ray waveguide optics can be gen- eralized from a single guiding film to an array of planar waveguides, enabling more complex and controllable phenomena of field propagation both in partic- ular in the near-field in the vicinity of objects to be probed by coherent imaging. Two advanced x-ray multilayer waveguides (MWGs) structures, i.e. the waveg- uide array (WGA) and the multi-guide resonant beam couplers (RBCs) are de- signed and discussed. Starting from basic theoretical analysis, the structural model of MWGs is built up. Then the MWGs are s...




Advanced x-ray multilayer waveguide optics


Book Description

The aim of this thesis was to design novel waveguide structures, and to analyze them in view of complex phenomena of near-field propagation. For this purpose, experimental far-field measurements were used in combination with finite-difference simulations and phase retrieval methods. Two novel structures have been designed, fabricated and characterized: the waveguide array (WGA), yielding several waveguided beams in transmission, and multi-guide resonate beam couplers (RBCs), tailored to yield two or several reflected beams. Two novel structures have been designed, fabricated and characterized: the WGA, yielding several waveguided beams in transmission, and multi-guide RBCs, tailored to yield two or several reflected beams. The WGA and the multi-guide RBCs are not only distinct in the coupling geometry. A major difference is related to the fact that the WGA principle is based on the separation (non coupling) of the different transmitted wavelets, while the RBC functions are based on a strong coupling of guided radiation in several layers.




Wave Optical Simulations of X-ray Nano-focusing Optics


Book Description

Curved x-ray multilayer mirrors focus synchrotron beams down to tens of nano metres. A wave-optical theory describing propagation of two waves in an elliptically curved focusing multilayer mirror is developed in this thesis. Using numerical integration, the layer shapes can be optimised for reflectivity and aberrations. Within this framework, performance of both existing and currently upgraded synchrotron beamlines is simulated. Using a more theoretical model case, limits of the theory are studied. A significant part of this work is dedicated to partial spatial coherence, modelled using the method of stochastic superpositions. Coherence propagation and filtering by x-ray waveguides is shown analytically and numerically. This comprehensive model is put forward that shall help in development and testing of new algorithms for a variety of imaging techniques using coherent x-ray beams. Advanced simulations accounting for real structure effects are compared to experimental data obtained at the GINIX instrument at the coherence beamline P10 at PETRA III, DESY. This thesis presents results of a collaboration between the Georg-August-Universität Göttingen and the European Synchrotron Radiation Facility (ESRF) Grenoble.




Soft X-ray Optics


Book Description

This text describes optics mainly in the 10 to 500 angstrom wavelength region. These wavelengths are 50 to 100 times shorter than those for visible light and 50 to 100 times longer than the wavelengths of medical x rays or x-ray diffraction from natural crystals. There have been substantial advances during the last 20 years, which one can see as an extension of optical technology to shorter wavelengths or as an extension of x-ray diffraction to longer wavelengths. Artificial diffracting structures like zone plates and multilayer mirrors are replacing the natural crystals of x-ray diffraction. Some of these structures can now be fabricated to have diffraction-limited resolution. The new possibilities are described in a simple, tutorial way.




Modern Developments in X-Ray and Neutron Optics


Book Description

This volume describes modern developments in reflective, refractive and diffractive optics for short wavelength radiation. It also covers recent theoretical approaches to modelling and ray-tracing the x-ray and neutron optical systems. It is based on the joint research activities of specialists in x-ray and neutron optics, working together under the framework of the European Programme for Cooperation in Science and Technology (COST, Action P7) in the period 2002-2006.