X86 Assembly Language and C Fundamentals


Book Description

The predominant language used in embedded microprocessors, assembly language lets you write programs that are typically faster and more compact than programs written in a high-level language and provide greater control over the program applications. Focusing on the languages used in X86 microprocessors, X86 Assembly Language and C Fundamentals expl




X86 Assembly Language and C Fundamentals


Book Description

The predominant language used in embedded microprocessors, assembly language lets you write programs that are typically faster and more compact than programs written in a high-level language and provide greater control over the program applications. Focusing on the languages used in X86 microprocessors, X86 Assembly Language and C Fundamentals expl




X86 Assembly Language and C Fundamentals


Book Description

The predominant language used in embedded microprocessors, assembly language lets you write programs that are typically faster and more compact than programs written in a high-level language and provide greater control over the program applications. Focusing on the languages used in X86 microprocessors, X86 Assembly Language and C Fundamentals explains how to write programs in the X86 assembly language, the C programming language, and X86 assembly language modules embedded in a C program. A wealth of program design examples, including the complete code and outputs, help you grasp the concepts more easily. Where needed, the book also details the theory behind the design. Learn the X86 Microprocessor Architecture and Commonly Used Instructions Assembly language programming requires knowledge of number representations, as well as the architecture of the computer on which the language is being used. After covering the binary, octal, decimal, and hexadecimal number systems, the book presents the general architecture of the X86 microprocessor, individual addressing modes, stack operations, procedures, arrays, macros, and input/output operations. It highlights the most commonly used X86 assembly language instructions, including data transfer, branching and looping, logic, shift and rotate, and string instructions, as well as fixed-point, binary-coded decimal (BCD), and floating-point arithmetic instructions. Get a Solid Foundation in a Language Commonly Used in Digital Hardware Written for students in computer science and electrical, computer, and software engineering, the book assumes a basic background in C programming, digital logic design, and computer architecture. Designed as a tutorial, this comprehensive and self-contained text offers a solid foundation in assembly language for anyone working with the design of digital hardware.




X86 Assembly Language and C Fundamentals


Book Description

Annotation The predominant language used in embedded microprocessors, assembly language lets you write programs that are typically faster and more compact than programs written in a high-level language and provide greater control over the program applications. Focusing on the languages used in X86 microprocessors, X86 Assembly Language and C Fundamentals explains how to write programs in the X86 assembly language, the C programming language, and X86 assembly language modules embedded in a C program. A wealth of program design examples, including the complete code and outputs, help you grasp the concepts more easily. Where needed, the book also details the theory behind the design. Learn the X86 Microprocessor Architecture and Commonly Used Instructions Assembly language programming requires knowledge of number representations, as well as the architecture of the computer on which the language is being used. After covering the binary, octal, decimal, and hexadecimal number systems, the book presents the general architecture of the X86 microprocessor, individual addressing modes, stack operations, procedures, arrays, macros, and input/output operations. It highlights the most commonly used X86 assembly language instructions, including data transfer, branching and looping, logic, shift and rotate, and string instructions, as well as fixed-point, binary-coded decimal (BCD), and floating-point arithmetic instructions. Get a Solid Foundation in a Language Commonly Used in Digital Hardware Written for students in computer science and electrical, computer, and software engineering, the book assumes a basic background in C programming, digital logic design, and computer architecture. Designed as a tutorial, this comprehensive and self-contained text offers a solid foundation in assembly language for anyone working with the design of digital hardware.




Modern X86 Assembly Language Programming


Book Description

Modern X86 Assembly Language Programming shows the fundamentals of x86 assembly language programming. It focuses on the aspects of the x86 instruction set that are most relevant to application software development. The book's structure and sample code are designed to help the reader quickly understand x86 assembly language programming and the computational capabilities of the x86 platform. Please note: Book appendixes can be downloaded here: http://www.apress.com/9781484200650 Major topics of the book include the following: 32-bit core architecture, data types, internal registers, memory addressing modes, and the basic instruction set X87 core architecture, register stack, special purpose registers, floating-point encodings, and instruction set MMX technology and instruction set Streaming SIMD extensions (SSE) and Advanced Vector Extensions (AVX) including internal registers, packed integer arithmetic, packed and scalar floating-point arithmetic, and associated instruction sets 64-bit core architecture, data types, internal registers, memory addressing modes, and the basic instruction set 64-bit extensions to SSE and AVX technologies X86 assembly language optimization strategies and techniques




Modern X86 Assembly Language Programming


Book Description

Gain the fundamentals of x86 64-bit assembly language programming and focus on the updated aspects of the x86 instruction set that are most relevant to application software development. This book covers topics including x86 64-bit programming and Advanced Vector Extensions (AVX) programming. The focus in this second edition is exclusively on 64-bit base programming architecture and AVX programming. Modern X86 Assembly Language Programming’s structure and sample code are designed to help you quickly understand x86 assembly language programming and the computational capabilities of the x86 platform. After reading and using this book, you’ll be able to code performance-enhancing functions and algorithms using x86 64-bit assembly language and the AVX, AVX2 and AVX-512 instruction set extensions. What You Will Learn Discover details of the x86 64-bit platform including its core architecture, data types, registers, memory addressing modes, and the basic instruction set Use the x86 64-bit instruction set to create performance-enhancing functions that are callable from a high-level language (C++) Employ x86 64-bit assembly language to efficiently manipulate common data types and programming constructs including integers, text strings, arrays, and structures Use the AVX instruction set to perform scalar floating-point arithmetic Exploit the AVX, AVX2, and AVX-512 instruction sets to significantly accelerate the performance of computationally-intense algorithms in problem domains such as image processing, computer graphics, mathematics, and statistics Apply various coding strategies and techniques to optimally exploit the x86 64-bit, AVX, AVX2, and AVX-512 instruction sets for maximum possible performance Who This Book Is For Software developers who want to learn how to write code using x86 64-bit assembly language. It’s also ideal for software developers who already have a basic understanding of x86 32-bit or 64-bit assembly language programming and are interested in learning how to exploit the SIMD capabilities of AVX, AVX2 and AVX-512.




The Art of Assembly Language, 2nd Edition


Book Description

Assembly is a low-level programming language that's one step above a computer's native machine language. Although assembly language is commonly used for writing device drivers, emulators, and video games, many programmers find its somewhat unfriendly syntax intimidating to learn and use. Since 1996, Randall Hyde's The Art of Assembly Language has provided a comprehensive, plain-English, and patient introduction to 32-bit x86 assembly for non-assembly programmers. Hyde's primary teaching tool, High Level Assembler (or HLA), incorporates many of the features found in high-level languages (like C, C++, and Java) to help you quickly grasp basic assembly concepts. HLA lets you write true low-level code while enjoying the benefits of high-level language programming. As you read The Art of Assembly Language, you'll learn the low-level theory fundamental to computer science and turn that understanding into real, functional code. You'll learn how to: –Edit, compile, and run HLA programs –Declare and use constants, scalar variables, pointers, arrays, structures, unions, and namespaces –Translate arithmetic expressions (integer and floating point) –Convert high-level control structures This much anticipated second edition of The Art of Assembly Language has been updated to reflect recent changes to HLA and to support Linux, Mac OS X, and FreeBSD. Whether you're new to programming or you have experience with high-level languages, The Art of Assembly Language, 2nd Edition is your essential guide to learning this complex, low-level language.




Fundamentals of Embedded Software


Book Description

Reflecting current industrial applications and programming practice, this book lays a foundation that supports the multi-threaded style of programming and high-reliability requirements of embedded software. Using a non-product specific approach and a programming (versus hardware) perspective, it focuses on the 32-bit protected mode processors and on C as the dominant programming language--with coverage of Assembly and how it can be used in conjunction with, and support of, C. Features an abundance of examples in C and an accompanying CD-ROM with software tools. Data Representation. Getting the Most Out of C. A Programmer's View of Computer Organization. Mixing C and Assembly. Input/Output Programming. Concurrent Software. Scheduling. Memory Management. Shared Memory. System Initialization. For Computer Scientists, Computer Engineers, and Electrical Engineers involved with embedded software applications.




ARM Assembly Language


Book Description

Delivering a solid introduction to assembly language and embedded systems, ARM Assembly Language: Fundamentals and Techniques, Second Edition continues to support the popular ARM7TDMI, but also addresses the latest architectures from ARM, including Cortex-A, Cortex-R, and Cortex-M processors-all of which have slightly different instruction sets, p




Low-Level Programming


Book Description

Learn Intel 64 assembly language and architecture, become proficient in C, and understand how the programs are compiled and executed down to machine instructions, enabling you to write robust, high-performance code. Low-Level Programming explains Intel 64 architecture as the result of von Neumann architecture evolution. The book teaches the latest version of the C language (C11) and assembly language from scratch. It covers the entire path from source code to program execution, including generation of ELF object files, and static and dynamic linking. Code examples and exercises are included along with the best code practices. Optimization capabilities and limits of modern compilers are examined, enabling you to balance between program readability and performance. The use of various performance-gain techniques is demonstrated, such as SSE instructions and pre-fetching. Relevant Computer Science topics such as models of computation and formal grammars are addressed, and their practical value explained. What You'll Learn Low-Level Programming teaches programmers to: Freely write in assembly language Understand the programming model of Intel 64 Write maintainable and robust code in C11 Follow the compilation process and decipher assembly listings Debug errors in compiled assembly code Use appropriate models of computation to greatly reduce program complexity Write performance-critical code Comprehend the impact of a weak memory model in multi-threaded applications Who This Book Is For Intermediate to advanced programmers and programming students