Biosurfactants


Book Description

The microbial world has given us many surprises including microbes that grow under extremely harsh conditions (122C at 40 MPa), novel metabolisms such as the uranium and perchlorate reduction, and novel chemicals that can be used to control diseases. We continually face new and difficult problems such as the need to transition to more carbon-neutral energy sources and to find eco-friendly chemicals and to find new drugs to treat disease. Will it be possible to tap into the seemingly limitless potential of microbial activity to solve our current and future problems?The answer to this question is probably yes. We are already looking to the microbial world to provide new energy sources, green chemicals to replace those made from petroleum, and new drugs to fight disease. To help us along these paths, we are deciphering how microorganisms interact with each other. We know that microbial populations interact and communicate with each other. The language that microbes use is chemical where small molecules are exchanged among different microbial cells. Sometimes, these chemicals suppress activities of competitors and could be used as antibiotics or may have other therapeutic uses. Other times, the chemicals stimulate complex responses in microbial populations such as fruiting body or biofilm formation. By understanding the conversation that microbes are having among themselves, e. g.




Lipid A in Cancer Therapy


Book Description

Cancer remains a major challenge for modern society. Not only does cancer rank among the first three causes of mortality in most population groups but also the therapeutic options available for most tumor types are limited. The existing ones have limited efficacy, lack specificity and their administration carry major side effects. Hence the urgent need for novel cancer therapies. One of the most promising avenues in research is the use of specific immunotherapy. The notion that the immune system may have important anti-tumor effects has been around for more than a century now. Every major progress in microbiology and immunology has been immediately followed by attempts to apply the new knowledge to the treatment of cancer. Progress has reached a point where it is well established that most cancer patients mount specific T cell responses against their tumors. The molecular identity of the antigens recognized by anti-tumor T cells has been elucidated and several hundreds of tumor-derived antigenic peptides have been discovered. Upon recognition of such peptides presented by self MHC molecules, both CD8 and CD4 T cells are activated, expand to high numbers and differentiate into effective anti-tumor agents. CD8 T cells directly destroy tumor cells and can cause even large tumors to completely regress in experimental mouse models. These observations have spurred intense research activity aimed at designing and testing cancer vaccines. Over 100 years ago Coley successfully used intratumoral injection of killed bacteria to treat sarcomas. The important anti-tumor effects observed in a fraction of these patients fueled major research efforts. These led to major discoveries in the 80s and the 90s. It turns out that bacterial lipopolysaccharides stimulate the production of massive amounts of a cytokine still known today as tumor necrosis factor (TNF-a). They do so by engagement of a rather complex set of interactions culminating in the ligation of a Toll-like receptor, TLR -4. Ensuing signaling through this receptor initiates potent innate immune responses. Unfortunately the clinical use of both TNF-a and LPS can not be generalized due to their very narrow therapeutic margin. Importantly, synthetic Lipid A analogs have been identified that retain useful bioactivity and yet possess only mild toxicity. The relatively large body of information accumulated thus far on the molecular and cellular interactions set in motion by administration of LPS as well as by the synthetic lipid A analogs allow to place this family of bacterially-derived molecules at the crossroads between innate and adaptive immunity. By virtue of this key position, the therapeutic applications being pursued aim at using these compounds either as direct anti-tumor agents or as vaccine adjuvants. The clinical experience acquired so far on these two avenues is asymmetric. Few clinical trials using Lipid A analogs as single anti-cancer agents involving less than 100 patients with advanced cancer have been reported. In contrast, lipid A has been tested in over 300,000 individuals in various vaccines trials, including therapeutic cancer vaccines. Clearly most of the work needed to develop lipid A as effective anti-cancer agents and/or as vaccine adjuvant lies ahead in the near future. This book is a timely contribution and provides a much needed up-to-date overview of the chemical, biological and physiological aspects of lipid A. It should be a beacon to all those involved in this field of research.




New Frontiers in Respiratory Control


Book Description

Breathing is performed by the rhythmic contraction of respiratory muscles. It ma- tains homeostasis of the organism by taking in the oxygen necessary to live and work and by controlling the level of CO within the organism. At first glance, breathing 2 seems simple; however, it is produced by a complex system in the brain with various afferents and efferents. The control of breathing is of the utmost importance in s- taining life, and although more than 150 years have passed since research on brea- ing control was first begun, many unsolved mysteries still remain. Breathing is like watching the tides at a beach that are created by the vast, complex open sea. The first Oxford Conference on Modeling and Control of Breathing was held 30 years ago in September of 1978 at the University Laboratory of Physiology in Oxford, England. During this first conference, the participants engaged in a hot d- cussion on the problem of whether breathing rhythm was produced by pacemaker cells or a neural network. This was before the discovery of the Bötinger complex in the medulla, and at the time, central chemoreceptive areas were still the focus of research. This conference was an especially unforgettable moment in the dawning of the new age of respiratory research. It has since been held every 3 years in various countries around the globe and is widely appreciated as the best respiratory meeting in the world.




Applied Surfactants


Book Description

While currently available titles either focus on the basics or on very specific subtopics, this text meets the need for a comprehensive survey of surfactants and their properties, with a strong emphasis on applications and their correlation to the fundamentals. The author covers their classification, physical properties, phase behavior, adsorption, effects - such as wetting, spreading and adhesion - as well as industrial applications in personal care and cosmetics, pharmaceuticals, agrochemicals and food products. Professor Tadros is a well-known expert on the topic of surfactants, with much experience in colloid science. Here, he uses his industrial experience to close the gap between fundamentals of surfactants and their relevance and applications in practice.




Microbial Biosurfactants


Book Description

Microbial biosurfactant compounds are a group of structurally diverse molecules produced by microorganisms, and are mainly categorized according to their chemical structure. The diversity of microbial biosurfactants makes them versatile and means that they offer a range of capabilities, while at the same time being economically sustainable. As such, they have potential applications in environmental processes, as well as in food, biomedicine and other industries. This book discusses innovative approaches and cutting-edge research that utilize the various properties of biosurfactants. Drawing on research from around the globe, it provides an up-to-date review of biosurfactant applications and their importance in fields such as medicine, gene therapy, immunotherapy, antimicrobial bioremediation and agriculture. It also discusses their anti-adhesive properties. The book will appeal to academics and researchers in the field of microbiology, as well as policymakers. It also serves as additional reading material for undergraduate and graduate students of agriculture, ecology, soil science, and environmental sciences.