Zinc Batteries


Book Description

Battery technology is constantly changing, and the concepts and applications of these changes are rapidly becoming increasingly more important as more and more industries and individuals continue to make “greener” choices in their energy sources. As global dependence on fossil fuels slowly wanes, there is a heavier and heavier importance placed on cleaner power sources and methods for storing and transporting that power. Battery technology is a huge part of this global energy revolution. Zinc batteries are an advantageous choice over lithium-based batteries, which have dominated the market for years in multiple areas, most specifically in electric vehicles and other battery-powered devices. Zinc is the fourth most abundant metal in the world, which is influential in its lower cost, making it a very attractive material for use in batteries. Zinc-based batteries have been around since the 1930s, but only now are they taking center stage in the energy, automotive, and other industries. Zinc Batteries: Basics, Developments, and Applicationsis intended as a discussion of the different zinc batteries for energy storage applications. It also provides an in-depth description of various energy storage materials for Zinc (Zn) batteries. This book is an invaluable reference guide for electrochemists, chemical engineers, students, faculty, and R&D professionals in energy storage science, material science, and renewable energy.




Zinc Batteries


Book Description

Battery technology is constantly changing, and the concepts and applications of these changes are rapidly becoming increasingly more important as more and more industries and individuals continue to make “greener” choices in their energy sources. As global dependence on fossil fuels slowly wanes, there is a heavier and heavier importance placed on cleaner power sources and methods for storing and transporting that power. Battery technology is a huge part of this global energy revolution. Zinc batteries are an advantageous choice over lithium-based batteries, which have dominated the market for years in multiple areas, most specifically in electric vehicles and other battery-powered devices. Zinc is the fourth most abundant metal in the world, which is influential in its lower cost, making it a very attractive material for use in batteries. Zinc-based batteries have been around since the 1930s, but only now are they taking center stage in the energy, automotive, and other industries. Zinc Batteries: Basics, Developments, and Applicationsis intended as a discussion of the different zinc batteries for energy storage applications. It also provides an in-depth description of various energy storage materials for Zinc (Zn) batteries. This book is an invaluable reference guide for electrochemists, chemical engineers, students, faculty, and R&D professionals in energy storage science, material science, and renewable energy.




Silver-zinc Battery


Book Description




Battery Reference Book


Book Description

Introduction to battery technology -- Guidelines to battery selection -- Battery characteristics. Lead-acid secondary batteries -- Nickel batteries -- Silver batteries -- Alkaline manganese batteries -- Carbon-zinc and carbon-zinc chloride primary batteries -- Mercury batteries -- Lithium batteries -- Manganese dioxide-magnesium perchlorate primary batteries -- Magnesium-organic electrolyte primary batteries -- Metal-air cells -- High-temperature thermally activated primary reserve batteries -- Zinc-halogen secondary batteries -- Sodium-sulphur secondary batteries -- Other fast-ion conducting solid systems -- Water-activated primary batteries -- Battery theory and design. Lead-acid secondary batteries -- Nickel batteries -- Silver batteries -- Alkaline manganese batteries -- Carbon-zinc and carbon-zinc chloride batteries -- Mercury-zinc batteries -- Lithium batteries -- Manganese dioxide- magnesium perchlorate primary batteries -- Metal-air batteries -- High-temperature thermally activ ...




Corrosion and Electrochemistry of Zinc


Book Description

Humankind's use of zinc stretches back to antiquity, and it was a component in some of the earliest known alloy systems. Even though metallic zinc was not "discovered" in Europe until 1746 (by Marggral), zinc ores were used for making brass in biblical times, and an 87% zinc alloy was found in prehistoric ruins in Transylvania. Also, zinc (the metal) was produced in quantity in India as far back as the thirteenth century, well before it was recognized as being a separate element. The uses of zinc are manifold, ranging from galvanizing to die castings to electronics. It is a preferred anode material in high-energy-density batteries (e.g., Ni/Zn, Ag/Zn, ZnJair), so that its electrochemistry, particularly in alkaline media, has been extensively explored. In the passive state, zinc is photoelectrochemically active, with the passive film displaying n-type characteristics. For the same reason that zinc is considered to be an excellent battery anode, it has found extensive use as a sacrificial anode for the protection of ships and pipelines from corrosion. Indeed, aside from zinc's well-known attributes as an alloying element, its widespread use is principally due to its electrochemical properties, which include a well-placed position in the galvanic series for protecting iron and steel in natural aqueous environments and its reversible dissolution behavior in alkaline solutions.




Encyclopedia of Electrochemical Power Sources


Book Description

The Encyclopedia of Electrochemical Power Sources is a truly interdisciplinary reference for those working with batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. With a focus on the environmental and economic impact of electrochemical power sources, this five-volume work consolidates coverage of the field and serves as an entry point to the literature for professionals and students alike. Covers the main types of power sources, including their operating principles, systems, materials, and applications Serves as a primary source of information for electrochemists, materials scientists, energy technologists, and engineers Incorporates nearly 350 articles, with timely coverage of such topics as environmental and sustainability considerations










Battery Hazards and Accident Prevention


Book Description

This first-of-its-kind handbook systematically addresses the issue of battery hazards and accident prevention. Chapters discuss the physical and chemical processes that contribute to battery hazards and provide detailed information on appropriate battery selection. The authors discuss primary and rechargeable batteries, new types of high-energy density batteries now entering the consumer market, and battery systems in electric vehicles. Practical and easily accessible, this reference meets the needs of battery engineers, environmentalists, medical personnel, and consumers.




NASA Thesaurus


Book Description