Zinc Finger Proteins


Book Description

In the early 1980s, a few scientists started working on a Xenopus transcription factor, TFIIIA. They soon discovered a novel domain associated with zinc, and named this domain "zinc finger. " Th e number of proteins with similar zinc fingers grew quickly and these proteins are now called C2H2, Cys2His2 or classical zinc finger proteins. To date, about 24,000 C2H2 zinc finger proteins have been recognized. Approximately 700 human genes, or more than 2% of the genome, have been estimated to encode C2H2 finger proteins. From the beginning these proteins were thought to be numerous, but no one could have predicted such a huge number. Perhaps thousands of scientists are now working on C2H2 zinc finger proteins fi-om variou s viewpoints. This field is a good example of how a new science begins with the insight of a few scientists and how it develops by efforts of numerous independent scientists, in contrast to a policy-driven scientific project, such as the Human Genome Project, with goals clearly set at its inception and with work performed by a huge collaboration throughout the world. As more zinc finger proteins were discovered, several subfamilies, such as C2C2, CCHC, CCCH, LIM, RING, TAZ, and FYVE emerged, increasing our understanding of zinc fingers. The knowledge was overwhelming. Moreover, scientists began defining the term "zinc finger" differently and using various names for identical zinc fingers. These complications may explain why no single comprehensive resource of zinc finger proteins was available before this publication.




Zinc Fingers


Book Description

Zinc fingers are small protein structural motifs that can coordinate one or more zinc ions to help stabilize their folds. They can be classified into several different structural families and typically function as interaction modules that bind DNA, RNA, proteins or small molecules. In this book, the authors present current research in the study of the structure, properties and applications of zinc fingers.




Handbook of Epigenetics


Book Description

Handbook of Epigenetics: The New Molecular and Medical Genetics, Second Edition, provides a comprehensive analysis of epigenetics, from basic biology, to clinical application. Epigenetics is considered by many to be the new genetics in that many biological phenomena are controlled, not through gene mutations, but rather through reversible and heritable epigenetic processes. These epigenetic processes range from DNA methylation to prions. The biological processes impacted by epigenetics are vast and encompass effects in lower organisms and humans that include tissue and organ regeneration, X-chromosome inactivation, stem cell differentiation, genomic imprinting, and aging. The first edition of this important work received excellent reviews; the second edition continues its comprehensive coverage adding more current research and new topics based on customer and reader reviews, including new discoveries, approved therapeutics, and clinical trials. From molecular mechanisms and epigenetic technology, to discoveries in human disease and clinical epigenetics, the nature and applications of the science is presented for those with interests ranging from the fundamental basis of epigenetics, to therapeutic interventions for epigenetic-based disorders. - Timely and comprehensive collection of fully up-to-date reviews on epigenetics that are organized into one volume and written by leading figures in the field - Covers the latest advances in many different areas of epigenetics, ranging from basic aspects, to technologies, to clinical medicine - Written at a verbal and technical level that can be understood by scientists and college students - Updated to include new epigenetic discoveries, newly approved therapeutics, and clinical trials




Zinc Biochemistry, Physiology, and Homeostasis


Book Description

Chapters in this book review the remarkable advances in the field of zinc biology over the last decade. Zinc is essential for life, in particular for growth and development, through its role in hundreds of zinc enzymes and thousands of zinc proteins. Its catalytic, structural, and regulatory functions in these proteins impact metabolism, gene expression, and signal transduction, including neurotransmission. Among the micronutrients, zinc may rank with iron as to its importance for public health. The topics covered range from single molecules to cells and to whole organisms: the chemistry, design, and application of fluorophores for the determination of cellular zinc; the role of zinc in proliferation, differentiation, and apoptosis of cells; proteins that transport, sense, and distribute zinc and together form a cellular homeostatic system; the coordination chemistry of zinc in metalloproteins; the role of zinc in the brain as a neuromodulator/transmitter; the dependence of the immune system on zinc; zinc homeostasis in the whole human body.




Translating Gene Therapy to the Clinic


Book Description

Translating Gene Therapy to the Clinic, edited by Dr. Jeffrey Laurence and Michael Franklin, follows the recent, much-lauded special issue of Translational Research in emphasizing clinical milestones and critical barriers to further progress in the clinic. This comprehensive text provides a background for understanding the techniques involved in human gene therapy trials, and expands upon the disease-specific situations in which these new approaches currently have the greatest therapeutic application or potential, and those areas most in need of future research. It emphasizes methods, tools, and experimental approaches used by leaders in the field of translational gene therapy. The book promotes cross-disciplinary communication between the sub-specialties of medicine, and remains unified in theme. - Presents impactful and widely supported research across the spectrum of science, method, implementation and clinical application - Offers disease-based coverage from expert clinician-scientists, covering everything from arthritis to congestive heart failure, as it details specific progress and barriers for current translational use - Provides key background information from immune response through genome engineering and gene transfer, relevant information for practicing clinicians contemplating enrolling patients in gene therapy trials




Molecular and Cellular Effects of Nutrition on Disease Processes


Book Description

This volume contains the proceedings of the 2nd World Conference of the International Society for Molecular Nutrition & Therapy. This conference was held on August 2-4, 1997, in Winnipeg, Canada. The goal of the conference was to advance our knowledge concerning the molecular events which link nutrition to various disease processes in the body. This volume represents an important compilation of unique articles addressing the molecular and cellular basis for the nutritional and therapeutic treatment of five general disease processes.




Gene Therapy for Viral Infections


Book Description

Gene Therapy for Viral Infections provides a comprehensive review of the broader field of nucleic acid and its use in treating viral infections. The text bridges the gap between basic science and important clinical applications of the technology, providing a systematic, integrated review of the advances in nucleic acid-based antiviral drugs and the potential advantages of new technologies over current treatment options. Coverage begins with the fundamentals, exploring varying topics, including harnessing RNAi to silence viral gene expression, antiviral gene editing, viral gene therapy vectors, and non-viral vectors. Subsequent sections include detailed coverage of the developing use of gene therapy for the treatment of specific infections, the principles of rational design of antivirals, and the hurdles that currently face the further advancement of gene therapy technology. - Provides coverage of gene therapy for a variety of infections, including HBV, HCV, HIV, hemorrhagic fever viruses, and respiratory and other viral infections - Bridges the gap between the basic science and the important medical applications of this technology - Features a broad approach to the topic, including an essential overview and the applications of gene therapy, synthetic RNA, and other antiviral strategies that involve nucleic acid engineering - Presents perspectives on the future use of nucleic acids as a novel class of antiviral drugs - Arms the reader with the cutting-edge information needed to stay abreast of this developing field




Abiotic Stress Response in Plants


Book Description

Understanding abiotic stress responses in plants is critical for the development of new varieties of crops, which are better adapted to harsh climate conditions. The new book by the well-known editor team Narendra Tuteja and Sarvajeet Gill provides a comprehensive overview on the molecular basis of plant responses to external stress like drought or heavy metals, to aid in the engineering of stress resistant crops. After a general introduction into the topic, the following sections deal with specific signaling pathways mediating plant stress response. The last part covers translational plant physiology, describing several examples of the development of more stress-resistant crop varieties.




Gene Editing


Book Description

Gene-editing technologies (e.g., ZFNs, TALENs, and CRISPRs/Cas9) have been extensively used as tools in basic research. They are further applied in manufacturing agricultural products, food, industrial products, medicinal products, etc. Particularly, the discovery of medicinal products using gene-editing technologies will open a new era for human therapeutics. Though there are still many technical and ethical challenges ahead of us, more and more products based on gene-editing technologies have been approved for marketing. These technologies are promising for multiple applications. Their development and implications should be explored in the broadest context possible. Future research directions should also be highlighted. In this book, the applications, perspectives, and challenges of gene-editing technologies are significantly demonstrated and discussed.




Autologous and Cancer Stem Cell Gene Therapy


Book Description

Stem cells provide for life-long cell replacement in tissues and organs, and have inherent homing abilities that are critical in therapeutic applications. Stem cells are also the driving force of cancer where genetic/epigenetic alterations culminate in tumorigenesis either in tissue stem cells or in some of their derivatives. As a rare subset of the tumor, cancer stem cells are the only drive of tumor initiation/propagation. Autologous and cancer stem cells are thus the key targets of 1) long-term and transient-regenerative/epigenetic gene therapy and 2) of recurrence-free anticancer therapy, respectively. While cancer stem cell gene therapy still needs time to accomplish, autologous stem cells have been instrumental in the first unequivocal successes for gene therapy whereby ex vivo retrovirally corrected hematopoietic stem cells have been returned to the patients.This timely book presents 1) the aforementioned stem cell gene therapy achievements that rely on random-integration of therapeutic transgenes into host chromosomes and 2) emerging experimental approaches aimed at eliminating random-integration oncogenic hazards through site-specific integration or gene targeting. Breakthrough endonuclease-boosted gene targeting for gene correction (inherited diseases) or targeted integration of therapeutic transgenes (other disorders) culminating in an efficiency compatible with clinical trials is one of the highlights of the book. Highlights also include the pioneering transplantation of adult pluripotent stem cells as a substitute for tissue-specific stem cells, thereby pinpointing the invaluable potential for stem cell gene therapy applications of autologous cells able to contribute to all three germ layers. Stem cell gene therapy is thus discussed in terms of 1) magnifying stem cell therapeutic homing through transient regenerative gene therapy and 2) of tackling most pathologies (including mitochondrial DNA diseases and ageing disorders) through stem cell repopulation dynamics into appropriate niches (long-term engraftment) and tissues (cell turn-over). Regarding cancer stem cell gene therapy, focus is on both the increasing number of identified tissue-specific cancer stem cells as the ultimate therapeutic targets and on the development of armed stem cells as tumor-homing vectors for targeted anticancer therapy.