Corrosion Resistance of Zinc and Zinc Alloys


Book Description

A cornerstone reference in the field, this work analyzes available information on the corrosion resistance of zinc and its alloys both as solid materials and as coatings on steel, detailing the corrosion resistance of zinc in atmospheric, aqueous, underground and chemical environments. Corrosion Resistance of Zinc and Zinc Alloys illustrates the nu







Corrosion and Electrochemistry of Zinc


Book Description

Humankind's use of zinc stretches back to antiquity, and it was a component in some of the earliest known alloy systems. Even though metallic zinc was not "discovered" in Europe until 1746 (by Marggral), zinc ores were used for making brass in biblical times, and an 87% zinc alloy was found in prehistoric ruins in Transylvania. Also, zinc (the metal) was produced in quantity in India as far back as the thirteenth century, well before it was recognized as being a separate element. The uses of zinc are manifold, ranging from galvanizing to die castings to electronics. It is a preferred anode material in high-energy-density batteries (e.g., Ni/Zn, Ag/Zn, ZnJair), so that its electrochemistry, particularly in alkaline media, has been extensively explored. In the passive state, zinc is photoelectrochemically active, with the passive film displaying n-type characteristics. For the same reason that zinc is considered to be an excellent battery anode, it has found extensive use as a sacrificial anode for the protection of ships and pipelines from corrosion. Indeed, aside from zinc's well-known attributes as an alloying element, its widespread use is principally due to its electrochemical properties, which include a well-placed position in the galvanic series for protecting iron and steel in natural aqueous environments and its reversible dissolution behavior in alkaline solutions.













Corrosion Resistance of Zinc and Zinc Alloys


Book Description

A cornerstone reference in the field, this work analyzes available information on the corrosion resistance of zinc and its alloys both as solid materials and as coatings on steel, detailing the corrosion resistance of zinc in atmospheric, aqueous, underground and chemical environments. Corrosion Resistance of Zinc and Zinc Alloys illustrates the numerous benefits of zinc and duplex coatings and presents practical case histories of their use.




Atmospheric Corrosion


Book Description

ATMOSPHERIC CORROSION Presents a comprehensive look at atmospheric corrosion, combining expertise in corrosion science and atmospheric chemistry Atmospheric corrosion has been a subject of engineering study, largely empirical, for nearly a century. Scientists came to the field rather later on and had considerable difficulty bringing their arsenal of tools to bear on the problem. Atmospheric corrosion was traditionally studied by specialists in corrosion having little knowledge of atmospheric chemistry, history, or prospects. Atmospheric Corrosion provides a combined approach bringing together experimental corrosion and atmospheric chemistry. The second edition expands on this approach by including environmental aspects of corrosion, atmospheric corrosion modeling, and international corrosion exposure programs. The combination of specialties provides a more comprehensive coverage of the topic. These scientific insights into the corrosion process and its amelioration are the focus of this book. Key topics include the following: Basic principles of atmospheric corrosion chemistry Corrosion mechanisms in controlled and uncontrolled environments Degradation of materials in architectural, transport, and structural applications; electronic devices; and cultural artifacts Protection of existing materials and choosing new ones that resist corrosion Prediction of how and where atmospheric corrosion may evolve in the future Complete with appendices discussing experimental techniques, computer models, and the degradation of specific metals, Atmospheric Corrosion, Second Edition continues to be an invaluable resource for corrosion scientists, corrosion engineers, conservators, environmental scientists, and anyone interested in the theory and application of this evolving field. The book concerns primarily the atmospheric corrosion of metals and is written at a level suitable for advanced undergraduates or beginning graduate students in any of the physical or engineering sciences.




Corrosion Resistance of Steels, Nickel Alloys, and Zinc in Aqueous Media


Book Description

This handbook is derived from the online reference "Corrosion Handbook", bringing together the relevant information about corrosion protection and prevention for steels, one of the most widely used materials. It provides comprehensive information, including tabulated data and references, on the corrosion properties of the following materials: Unalloyed steels and cast steel, unalloyed cast iron, high-alloy cast iron, high-silicon cast iron, structural steels with up to 12% chromium, ferritic chromium steels with more than 12% chromium, ferritic-austenitic steels with more than 12% chromium, high-alloy multiphase steels, ferritic/perlitic-martensitic steels, ferritic-austenitic steels/duplex steels, austenitic chromium-nickel steels, austenitic chromium-nickel-molybdenum steels, austenitic chromium-nickel steels with special alloying additions, special iron-based alloys, and zinc. The following corrosive media are considered: Seawater, brackish water, industrial waste water, municipal waste water, drinking water, high-purity water.




Corrosion Resistance of Steels, Nickel Alloys, and Zinc in Aqueous Media


Book Description

This handbook is derived from the online reference "Corrosion Handbook", bringing together the relevant information about corrosion protection and prevention for steels, one of the most widely used materials. It provides comprehensive information, including tabulated data and references, on the corrosion properties of the following materials: Unalloyed steels and cast steel, unalloyed cast iron, high-alloy cast iron, high-silicon cast iron, structural steels with up to 12% chromium, ferritic chromium steels with more than 12% chromium, ferritic-austenitic steels with more than 12% chromium, high-alloy multiphase steels, ferritic/perlitic-martensitic steels, ferritic-austenitic steels/duplex steels, austenitic chromium-nickel steels, austenitic chromium-nickel-molybdenum steels, austenitic chromium-nickel steels with special alloying additions, special iron-based alloys, and zinc. The following corrosive media are considered:Seawater, brackish water, industrial waste water, municipal waste water, drinking water, high-purity water.