Advanced Laser Remote Sensing


Book Description

This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Remote measurement of wind velocities is critical to a wide variety of applications such as environmental studies, weather prediction, aircraft safety, the accuracy of projectiles, bombs, parachute drops, prediction of the dispersal of chemical and biological warfare agents, and the debris from nuclear explosions. Major programs to develop remote sensors for these applications currently exist in the DoD and NASA. At present, however, there are no real-time, three-dimensional wind measurement techniques that are practical for many of these applications and we report on two new promising techniques. The first new technique uses an elastic backscatter lidar to track aerosol patterns in the atmosphere and to calculate three dimensional wind velocities from changes in the positions of the aerosol patterns. This was first done by Professor Ed Eloranta of the University of Wisconsin using post processing techniques and we are adapting Professor Eloranta's algorithms to a real-time data processor and installing it in an existing elastic backscatter lidar system at Los Alamos (the XM94 helicopter lidar), which has a compatible data processing and control system. The second novel wind sensing technique is based on radio-frequency (RF) modulation and spatial filtering of elastic backscatter lidars. Because of their compactness and reliability, solid state lasers are the lasers of choice for many remote sensing applications, including wind sensing.










Advanced Devices and Materials for Laser Remote Sensing:


Book Description

Laser remote sensing is a powerful technique with a wide range of applications in fields as diverse as atmospheric studies, marine ecology, space exploration, air travel safety and military target identification, thus addressing societal needs. Many LIDAR (Light Detection and Ranging) instruments have been developed, from ground-based, airborne and space-based platforms. However, significant improvements (more durable, lightweight, economical) are required in materials used for the LIDAR instrumentation system. This book, first published in 2005, reviews and outlines trends and challenges in this important field. Contributions from key research institutions show that advanced devices developed by the telecommunication industry can play an important role in addressing the increasing demand for more efficient and compact LIDAR systems. Fiber optics lasers and MEMS-based semiconductor lasers are examples of such devices. Reliability of LIDAR instruments is also addressed. Indeed, for LIDAR instruments operating in space, the reliability and lifetime of laser diodes are particularly critical.




Optical and Laser Remote Sensing


Book Description

The field of optical and laser remote sensing has grown rapidly in recent years. This dynamic growth has been stimulated not only by technological advances in lasers, detectors, and optical system design, but also by the potential application of remote sensing systems to a wide variety of atmo spheric measurements. Optical and laser remote sensing can allow single ended measurement capability not offered by conventional point-detection techniques. While many past measurements have been associated with labo ratory research. practical systems have recently been developed which are capable of remotely detecting. measuring. and tracking a wide range of molecular and atomic species in the atmosphere with concentrations of parts per billion and at ranges over 100 km. This book is a compilation of papers which represent an overview of the present state of development of optical and laser remote sensing tech nology. The subjects covered include both passive and active remote sen sing techniques in the UV, visible, and IR spectral regions. related laser and detector technology, and atmospheric propagation and system analysis considerations. While the papers do not constitute an exhaustive treat ment of the excellent research being conducted in this field, they are representative of the wide diversity of present efforts. It is hoped that the reader will gain a general understanding of the current research in optical and laser remote sensing as well as an overview of current systems development.




Laser Remote Sensing


Book Description

Information on recent progress in laser remote sensor (LIDAR) technology can be found scattered throughout numerous journal articles and conference proceedings, but until now there has been no work that summarizes recent advancements and achievements in the field in a detailed format. Laser Remote Sensing provides an up-to-date, comprehensiv







Laser Remote Sensing


Book Description

Presents a concise, self-contained monograph on laser remote sensing and its applications. Discusses the ways in which lasers can be used to remotely measure the atmosphere and the hydrosphere. Provides an historical perspective and reviews the basic physics needed.







LiDAR Remote Sensing and Applications


Book Description

Ideal for both undergraduate and graduate students in the fields of geography, forestry, ecology, geographic information science, remote sensing, and photogrammetric engineering, LiDAR Remote Sensing and Applications expertly joins LiDAR principles, data processing basics, applications, and hands-on practices in one comprehensive source. The LiDAR data within this book is collected from 27 areas in the United States, Brazil, Canada, Ghana, and Haiti and includes 183 figures created to introduce the concepts, methods, and applications in a clear context. It provides 11 step-by-step projects predominately based on Esri’s ArcGIS software to support seamless integration of LiDAR products and other GIS data. The first six projects are for basic LiDAR data visualization and processing and the other five cover more advanced topics: from mapping gaps in mangrove forests in Everglades National Park, Florida to generating trend surfaces for rock layers in Raplee Ridge, Utah. Features Offers a comprehensive overview of LiDAR technology with numerous applications in geography, forestry and earth science Gives necessary theoretical foundations from all pertinent subject matter areas Uses case studies and best practices to point readers to tools and resources Provides a synthesis of ongoing research in the area of LiDAR remote sensing technology Includes carefully selected illustrations and data from the authors' research projects Before every project in the book, a link is provided for users to download data