An Introduction to the Mathematics of Planning and Scheduling


Book Description

This book introduces readers to the many variables and constraints involved in planning and scheduling complex systems, such as airline flights and university courses. Students will become acquainted with the necessity for scheduling activities under conditions of limited resources in industrial and service environments, and become familiar with methods of problem solving. Written by an expert author with decades of teaching and industry experience, the book provides a comprehensive explanation of the mathematical foundations to solving complex requirements, helping students to understand underlying models, to navigate software applications more easily, and to apply sophisticated solutions to project management. This is emphasized by real-world examples, which follow the components of the manufacturing process from inventory to production to delivery. Undergraduate and graduate students of industrial engineering, systems engineering, and operations management will find this book useful in understanding optimization with respect to planning and scheduling.




Handbook on Scheduling


Book Description

This book provides a theoretical and application-oriented analysis of deterministic scheduling problems in advanced planning and computer systems. The text examines scheduling problems across a range of parameters: job priority, release times, due dates, processing times, precedence constraints, resource usage and more, focusing on such topics as computer systems and supply chain management. Discussion includes single and parallel processors, flexible shops and manufacturing systems, and resource-constrained project scheduling. Many applications from industry and service operations management and case studies are described. The handbook will be useful to a broad audience, from researchers to practitioners, graduate and advanced undergraduate students.




Sequencing and Scheduling


Book Description




Scheduling: Control-Based Theory and Polynomial-Time Algorithms


Book Description

This book presents a first attempt to systematically collect, classify and solve various continuous-time scheduling problems. The classes of problems distinguish scheduling by the number of machines and products, production constraints and performance measures. Although such classes are usually considered to be a prerogative of only combinatorial scheduling literature, the scheduling methodology suggested in this book is based on two mathematical tools - optimal control and combinatorics. Generally considered as belonging to two totally different areas of research and application, these seemingly irreconcilable tools can be integrated in a unique solution approach with the advantages of both. This new approach provides the possibility of developing effective polynomial-time algorithms to solve the generic scheduling problems. This book is aimed at a student audience - final year undergraduates as well as master and Ph.D. students, primarily in Operations Research, Management, Industrial Engineering and Control Systems. Indeed, some of the material in the book has formed part of the content of undergraduate and graduate courses taught at the Industrial Engineering Department of Tel-Aviv University, the Logistics Department of Bar-Ilan University and the Technology Management Department of Rolon Center for Technological Education, Israel. The book is also useful for practicing engineers interested in planning, scheduling and optimization methods. Since the book addresses the theory and design of computer-based scheduling algorithms, applied mathematicians and computer software specialists engaged in developing scheduling software for industrial engineering and management problems will find that the methods developed here can be embedded very efficiently in large applications.




Planning and Scheduling Optimization


Book Description

Although planning and scheduling optimization have been explored in the literature for many years now, it still remains a hot topic in the current scientific research. The changing market trends, globalization, technical and technological progress, and sustainability considerations make it necessary to deal with new optimization challenges in modern manufacturing, engineering, and healthcare systems. This book provides an overview of the recent advances in different areas connected with operations research models and other applications of intelligent computing techniques used for planning and scheduling optimization. The wide range of theoretical and practical research findings reported in this book confirms that the planning and scheduling problem is a complex issue that is present in different industrial sectors and organizations and opens promising and dynamic perspectives of research and development.




Mathematical Programming and Financial Objectives for Scheduling Projects


Book Description

Mathematical Programming and Financial Objectives for Scheduling Projects focuses on decision problems where the performance is measured in terms of money. As the title suggests, special attention is paid to financial objectives and the relationship of financial objectives to project schedules and scheduling. In addition, how schedules relate to other decisions is treated in detail. The book demonstrates that scheduling must be combined with project selection and financing, and that scheduling helps to give an answer to the planning issue of the amount of resources required for a project. The author makes clear the relevance of scheduling to cutting budget costs. The book is divided into six parts. The first part gives a brief introduction to project management. Part two examines scheduling projects in order to maximize their net present value. Part three considers capital rationing. Many decisions on selecting or rejecting a project cannot be made in isolation and multiple projects must be taken fully into account. Since the requests for capital resources depend on the schedules of the projects, scheduling taken on more complexity. Part four studies the resource usage of a project in greater detail. Part five discusses cases where the processing time of an activity is a decision to be made. Part six summarizes the main results that have been accomplished.




Scheduling Theory. Single-Stage Systems


Book Description

Scheduling theory is an important branch of operations research. Problems studied within the framework of that theory have numerous applications in various fields of human activity. As an independent discipline scheduling theory appeared in the middle of the fifties, and has attracted the attention of researchers in many countries. In the Soviet Union, research in this direction has been mainly related to production scheduling, especially to the development of automated systems for production control. In 1975 Nauka ("Science") Publishers, Moscow, issued two books providing systematic descriptions of scheduling theory. The first one was the Russian translation of the classical book Theory of Scheduling by American mathematicians R. W. Conway, W. L. Maxwell and L. W. Miller. The other one was the book Introduction to Scheduling Theory by Soviet mathematicians V. S. Tanaev and V. V. Shkurba. These books well complement each other. Both. books well represent major results known by that time, contain an exhaustive bibliography on the subject. Thus, the books, as well as the Russian translation of Computer and Job-Shop Scheduling Theory edited by E. G. Coffman, Jr., (Nauka, 1984) have contributed to the development of scheduling theory in the Soviet Union. Many different models, the large number of new results make it difficult for the researchers who work in related fields to follow the fast development of scheduling theory and to master new methods and approaches quickly.




Handbook on Scheduling


Book Description

This book provides a theoretical and application-oriented analysis of deterministic scheduling problems in advanced planning and computer systems. The text examines scheduling problems across a range of parameters: job priority, release times, due dates, processing times, precedence constraints, resource usage and more, focusing on such topics as computer systems and supply chain management. Discussion includes single and parallel processors, flexible shops and manufacturing systems, and resource-constrained project scheduling. Many applications from industry and service operations management and case studies are described. The handbook will be useful to a broad audience, from researchers to practitioners, graduate and advanced undergraduate students.




Complex Scheduling


Book Description

Scheduling problems have been investigated since the late ?fties. Two types of applications have mainly motivated research in this area: project planning and machine scheduling. While in machine scheduling a large number of speci?c scheduling situations depending on the machine environment and the job c- racteristicshavebeenconsidered, theearlyworkinprojectplanninginvestigated scheduling situations with precedence constraints between activities assuming that su?cient resources are available to perform the activities. More recently, in project scheduling scarce resources have been taken into account leading to so-called resource-constrained project scheduling problems. On the other hand, also in machine scheduling more general and complex problems have been - vestigated. Due to these developments today both areas are much closer to each other. Furthermore, applications like timetabling, rostering or industrial scheduling are connected to both areas. This book deals with such complex scheduling problems and methods to solve them. It consists of three parts: The ?rst part (Chapters 1 and 2) contains a description of basic scheduling models with applications and an introduction into discrete optimization (covering complexity, shortest path algorithms, linear programming, network ?ow algorithms and general optimization methods). In the second part (Chapter 3) resource-constrained project scheduling problems are considered. Especially, methods like constraint propagation, branch-a- bound algorithms and heuristic procedures are described. Furthermore, lower bounds and general objective functions are discussed.




Introduction to Scheduling


Book Description

Full of practical examples, Introduction to Scheduling presents the basic concepts and methods, fundamental results, and recent developments of scheduling theory. With contributions from highly respected experts, it provides self-contained, easy-to-follow, yet rigorous presentations of the material.The book first classifies scheduling problems and