Ash Impacts on Gasoline Particulate Filter Performance and Service Life


Book Description

New regulations in the United States and Europe, designed to address climate change concerns by reducing greenhouse gas emissions, are causing increased use of gasoline direct-injection (GDI) engines in light-duty vehicles (LDV). Separate new regulations that aim to reduce particulate emissions to address air pollution concerns are taking effect concurrent with greenhouse gas limitations in both jurisdictions. GDI engines are proven to create more particulate emissions than previously utilized port-injection technology. Increasing particulate emissions rates combined with falling regulatory particulate emissions limits requires new strategies to reduce these emissions from gasoline powered LDVs. Particulate filters have been successfully implemented to reduce particulate emissions from diesel engine exhaust for over a decade. Diesel particulate filters have a demonstrated filtration efficiency of 95% or greater and have reduced diesel particulate mass (PM) emissions by one to two orders of magnitude. GDI engines require no more than one order of magnitude reduction in particulate emissions to meet new regulations. Existing particulate filter technology in use in diesel vehicles is capable of reducing GDI engine emissions to new regulatory levels; however, it is proposed that these reduction may be achievable through means other than gasoline particulate filters (GPF). A GPF will create an additional back-pressure in the engine exhaust system that will reduce engine power and efficiency. This backpressure will increase as PM is trapped in the filter and decrease as combustible PM removed. A buildup of incombustible ash present in engine-out PM will increase the baseline backpressure of the filter during the course of its service life. It is important to understand the impact of ash on the filter pressure drop performance before implementing GPF to meet new emissions regulations. This study builds on existing diesel particulate filter technology and demonstrates through experimental results the mechanisms by which ash increases GPF pressure drop. Ash deposits are also shown to increase the light-off temperature of three-way catalyst coatings in GPF.







Developing an Accelerated Aging System for Gasoline Particulate Filters and an Evaluation Test for Effects on Engine Performance


Book Description

Stringent regulations worldwide will limit the level of particulate matter (PM) emitted from gasoline engines equipped with direct fuel injection. Gasoline particulate filters (GPFs) present one strategy for meeting PM limits over the full operating range of the engine. Over time these filters accumulate incombustible ash, increasing system pressure drop and adversely effecting engine performance. The effect of aging as a result of ash accumulation is examined over the full lifetime of gasoline particulate filters, using a novel accelerated aging system. This system utilizes a gasoline combustion chamber into which lubricating oil is injected simulating combustion in the power cylinder - the primary source of lubricant-derived ash. Advanced imaging techniques are used to characterize filter and particulate emission behavior, and compare to prior data from diesel filters of the same type. Likewise, pressure drop behavior is observed for multiple filter samples and compared to prior experiments. A collocated Gasoline Direct Injection engine was installed for comparative purposes; a method of testing engine performance with GPF installations was developed and the engine was prepared and instrumented for future testing. This report details the construction and validation of the accelerated aging system, examination and comparison of results to those from prior experiments, and confirmation of principal assumptions used in developing the experimental test matrix. This study is one of a very few completed in a unique, emerging field of study, driven by new and extremely stringent emissions regulations around the globe. Practical testing here lays the foundation for future detailed research into the behavior and application of particulate filters to gasoline fueled engines in light duty passenger vehicles.




Automotive Emissions Regulations and Exhaust Aftertreatment Systems


Book Description

The objective of this book is to present a fundamental development of the science and engineering underlying the design of exhaust aftertreatment systems for automotive internal combustion engines. No pre-requisite knowledge of the field is required: our objective is to acquaint the reader, whom we expect to be new to the field of emissions control, with the underlying principles, control methods, common problems, and fuel effects on catalytic exhaust aftertreatment devices. We do this in hope that they can better understand the previous and current generations of emissions control, and improve upon them. This book is designed for the engineer, researcher, designer, student, or any combination of those, who is concerned with the control of automotive exhaust emissions. It includes discussion of theory and fundamentals applicable to hardware development.




Reducing Particulate Emissions in Gasoline Engines


Book Description

For years, diesel engines have been the focus of particulate matter emission reductions. Now, however, modern diesel engines emit less particles than a comparable gasoline engine. This transformation necessitates an introduction of particulate reduction strategies for the gasoline-powered vehicle. Many strategies can be leveraged from diesel engines, but new combustion and engine control technologies will be needed to meet the latest gasoline regulations across the globe. Particulate reduction is a critical health concern in addition to the regulatory requirements. This is a vital issue with real-world implications. Reducing Particulate Emissions in Gasoline Engines encompasses the current strategies and technologies used to reduce particulates to meet regulatory requirements and curtail health hazards - reviewing principles and applications of these techniques. Highlights and features in the book include: Gasoline particulate filter design, function and applications Coated and uncoated three way catalyst design and integration Measurement of gasoline particulate matter emission, both laboratory and PEMS The goal is to provide a comprehensive assessment of gasoline particulate emission control to meet regulatory and health requirements - appealing to calibration, development and testing engineers alike.




Individual and Synergistic Effects of Lubricant Additive (Ca, Mg, Zn) Combinations on Ash Characteristics and Diesel Particulate Filters Performance


Book Description

Diesel particulate filters (DPF) are devices that trap hazardous particulate matter from diesel engine exhaust in order to meet increasingly strict particle emissions regulations. Diesel exhaust particulates mainly include soot and ash. Soot, carbon particles derived from incomplete fuel combustion, can be oxidized into carbon dioxide after being trapped by the DPF through a catalytic heating process called regeneration. Ash, however, derived from metallic additives in the engine lubricant required for robust engine operation, is an incombustible material and remains within the DPF following regeneration. As ash accumulates over time, exhaust airflow through the filter becomes restricted and an engine backpressure results. Engine performance and fuel economy are reduced, requiring the DPF to be cleaned or replaced. While the detrimental effects of ash on DPF performance and therefore fuel economy can be illustrated and quantified, there is much to be understood about the specific factors that govern ash properties like distribution, permeability, and morphology. Several different parameters, such as engine operating conditions and DPF design, have been found to significantly impact ash characteristics, and the ultimate goal is to be able to control these parameters to reduce detrimental ash effects to a minimum and improve DPF service life and performance. This work addresses the source of ash directly and investigates the effect of lubricant additive chemistry on ash characteristics and DPF performance. Three lubricant formulations, that differ only in the type of additives present, are tested and compared using a controlled, accelerated DPF loading system. Filter pressure drop response and resulting ash property data collected using an array of experimental and analytical techniques show that very little difference exists between the tested oils of differing additive content.




Particulate Emissions Control Using Advanced Filter Systems


Book Description

This is a 3-way CRADA project working together with Corning, Inc. and Hyundai Motor Co. (HMC). The project is to understand particulate emissions from gasoline direct-injection engines (GDI) and their physico-chemical properties. In addition, this project focuses on providing fundamental information about filtration and regeneration mechanisms occurring in gasoline particulate filter (GPF) systems. For the work, Corning provides most advanced filter substrates for GPF applications and HMC provides three-way catalyst (TWC) coating services of these filter by way of a catalyst coating company. Then, Argonne National Laboratory characterizes fundamental behaviors of filtration and regeneration processes as well as evaluated TWC functionality for the coated filters. To examine aging impacts on TWC and GPF performance, the research team evaluates gaseous and particulate emissions as well as back-pressure increase with ash loading by using an engine-oil injection system to accelerate ash loading in TWC-coated GPFs.




Particulate Emissions Control Using Advanced Filter Systems


Book Description

This is a 3-way CRADA project working together with Corning, Incorporated and Hyundai Motor Company (HMC). The project is to understand particulate emissions from gasoline direct-injection engines (GDI) and their physico-chemical properties. In addition, this project focuses on providing fundamental information about filtration and regeneration mechanisms occurring in gasoline particulate filter (GPF) systems. For the work, Corning provides most advanced filter substrates for GPF applications and HMC provides three-way catalyst (TWC) coating services of these filter by way of a catalyst coating company. Then, Argonne National Laboratory characterizes fundamental behaviors of filtration and regeneration processes as well as evaluated TWC functionality for the coated filters. To examine aging impacts on TWC and GPF performance, the research team evaluates gaseous and particulate emissions as well as back-pressure increase with ash loading by using an engine-oil injection system to accelerate ash loading in TWC-coated GPFs.




Encyclopedia of Automotive Engineering


Book Description

Erstmals eine umfassende und einheitliche Wissensbasis und Grundlage für weiterführende Studien und Forschung im Bereich der Automobiltechnik. Die Encyclopedia of Automotive Engineering ist die erste umfassende und einheitliche Wissensbasis dieses Fachgebiets und legt den Grundstein für weitere Studien und tiefgreifende Forschung. Weitreichende Querverweise und Suchfunktionen ermöglichen erstmals den zentralen Zugriff auf Detailinformationen zu bewährten Branchenstandards und -verfahren. Zusammenhängende Konzepte und Techniken aus Spezialbereichen lassen sich so einfacher verstehen. Neben traditionellen Themen des Fachgebiets beschäftigt sich diese Enzyklopädie auch mit "grünen" Technologien, dem Übergang von der Mechanik zur Elektronik und den Möglichkeiten zur Herstellung sicherer, effizienterer Fahrzeuge unter weltweit unterschiedlichen wirtschaftlichen Rahmenbedingungen. Das Referenzwerk behandelt neun Hauptbereiche: (1) Motoren: Grundlagen; (2) Motoren: Design; (3) Hybrid- und Elektroantriebe; (4) Getriebe- und Antriebssysteme; (5) Chassis-Systeme; (6) Elektrische und elektronische Systeme; (7) Karosserie-Design; (8) Materialien und Fertigung; (9) Telematik. - Zuverlässige Darstellung einer Vielzahl von Spezialthemen aus dem Bereich der Automobiltechnik. - Zugängliches Nachschlagewerk für Jungingenieure und Studenten, die die technologischen Grundlagen besser verstehen und ihre Kenntnisse erweitern möchten. - Wertvolle Verweise auf Detailinformationen und Forschungsergebnisse aus der technischen Literatur. - Entwickelt in Zusammenarbeit mit der FISITA, der Dachorganisation nationaler Automobil-Ingenieur-Verbände aus 37 Ländern und Vertretung von über 185.000 Ingenieuren aus der Branche. - Erhältlich als stets aktuelle Online-Ressource mit umfassenden Suchfunktionen oder als Print-Ausgabe in sechs Bänden mit über 4.000 Seiten. Ein wichtiges Nachschlagewerk für Bibliotheken und Informationszentren in der Industrie, bei Forschungs- und Schulungseinrichtungen, Fachgesellschaften, Regierungsbehörden und allen Ingenieurstudiengängen. Richtet sich an Fachingenieure und Techniker aus der Industrie, Studenten höherer Semester und Studienabsolventen, Forscher, Dozenten und Ausbilder, Branchenanalysen und Forscher.




Engine Testing


Book Description

Engine Testing: Electrical, Hybrid, IC Engine and Power Storage Testing and Test Facilities, Fifth Edition covers the requirements of test facilities dealing with e-vehicle systems and different configurations and operations. Chapters dealing with the rigging and operation of Units Under Test (UUT) are updated to include electric motor-based systems, test cell services and thermo-dynamics. Control module and system testing using advanced, in-the-Loop (XiL) methods are described, including powertrain component integrated simulation and testing. All other chapters dealing with test cell design, installation, safety and use together with the cell support systems in IC engine testing are updated to reflect current developments and research. Covers multiple technical disciplines for anyone required to design, modify or operate an automotive powertrain test facility Provides tactics on the development of electrical and hybrid powertrains and energy storage systems Presents coverage of the housing and testing of automotive battery systems in addition to the use of ‘virtual’ testing in the form of "x-in-the-loop’ throughout the powertrain’s development and test life