Blast Effects


Book Description

This book compiles a variety of experimental data on blast waves. The book begins with an introductory chapter and proceeds to the topic of blast wave phenomenology, with a discussion on Rankine-Hugoniot equations and the Friedlander equation, used to describe the pressure-time history of a blast wave. Additional topics include arrival time measurement, the initiation of detonation by exploding wires, a discussion of TNT equivalency, and small scale experiments. Gaseous and high explosive detonations are covered as well. The topics and experiments covered were chosen based on the comparison of used scale sizes, from small to large. Each characteristic parameter of blast waves is analyzed and expressed versus scaled distance in terms of energy and mass. Finally, the appendix compiles a number of polynomial laws that will prove indispensable for engineers and researchers.




Blast Effects on Buildings


Book Description

This guide is aimed at all engineers and architects involved in building design, focusing on the importance of constructing buildings which minimise damage to people and property in the event of an explosion.
















Blast Effects on Buildings


Book Description

Reflects developments in the field of blast engineering since the early 1990s. Combining coverage of the design standards, codes and materials with an appreciation of the needs and demands of the designer, this book provides the engineer with a comprehensive source of reference for the main elements of blast engineering design in modern practice.




Blast Injury Science and Engineering


Book Description

This heavily revised second edition provides a comprehensive multi-disciplinary resource on blast injuries. It features detailed information on the basic science, engineering, and medicine associated with blast injuries. Clear, easy to understand descriptions of the basic science are accompanied by case studies of a variety of clinical problems including heterotopic ossification, hearing damage, and traumatic brain injury, enabling the reader to develop a deep understanding of how to appropriately apply the relevant science into their clinical practice. The use of prosthetics, orthotics and osseointegration in rehabilitation is also covered. Blast Injury Science and Engineering: A Guide for Clinicians and Researchers is a valuable interdisciplinary text primarily focused towards clinical medical professionals and trainees seeking to develop a thorough understanding of injury mechanisms, and the latest treatment techniques. In addition, this resource is of use to individuals in other fields whose work centres around blast injury science such as injury mitigation researchers, military scientists and engineers.







Blast Mitigation Strategies in Marine Composite and Sandwich Structures


Book Description

This book primarily focuses on methodologies to enable marine structures to resist high velocity impact loadings. It is based on invited talks presented at the recent India–USA workshop on “Recent Advances in Blast Mitigation Strategies in Civil and Marine Composite Structures” The book comprises content from top researchers from India and the USA and covers various aspects of the topic, including modeling and simulation, design aspects, experimentation and various challenges. These failure modes significantly reduce the structural integrity of the marine structures unless they are designed to resist such harsh loadings. Understanding the mechanics of these structures under harsh loadings is still an open area of research, and the behavior of these structures is not fully understood. The book highlights efforts to reduce the effects of blast loadings on marine composite structures. Intended for researchers/scientists and practicing engineers, the book focuses not only the design and analysis challenges of marine composite structures under such harsh loading conditions, but also provides new design guidelines.