Metal-Catalyzed Oxidations of Organic Compounds


Book Description

Metal-Catalyzed Oxidations of Organic Compounds: Mechanistic Principles and Synthetic focuses on the oxidative transformations of functional groups. This book explores oxidation as being extensively used in the laboratory synthesis of fine organic chemicals and in the manufacture of large-volume petrochemicals. Organized into two parts encompassing 13 chapters, this book starts with an overview of the mechanistic principles of oxidation–reduction in biochemical, organic, and inorganic systems. This text then proceeds with a discussion of the use of molecular oxygen, hydrogen peroxide, and alkyl hydroperoxides as primary oxidants. Other chapters explore stoichiometric oxidations with metal oxidants, which include permanganate and chromic acid. This book discusses as well the synthetic applications of catalytic oxidations as well as the technology of petrochemical oxidation. The final chapter deals with the autoxidations of sulfur, phosphorus, and nitrogen compounds. This book is intended for chemists involved in organic synthesis, catalysis, and organometallic chemistry, both in academic institutions and in industrial laboratories.




Catalytic Oxidation of Volatile Organic Liquids


Book Description

Metal oxide and supported-Pt catalysts were developed for complete oxidation of volatile organic compounds (VOCs) and other solvent-derived organic vapors (OVs) in air at relatively low temperatures. The goal for this work is to produce a simple, cost- effective technology for reducing the concentration of organic contaminants in air to acceptable levels before the air is released into the atmosphere or recirculated. Specific applications include ventilated work spaces for spray painting and engine maintenance, indoor air decontamination, dry cleaning, food processing, fume hoods, residential use, and solvent-intensive industrial processes. Catalyst powders and monolith-supported catalysts were screened for conversion of 1-butanol, toluene, and methyl ethyl ketone to carbon dioxide and water. ... However, the catalysts quickly deactivated in the presence of sulfur and phosphorus.




Heterogeneous Catalytic Oxidation


Book Description

Table of contents