Catalytic Oxidation of Volatile Organic Liquids


Book Description

Metal oxide and supported-Pt catalysts were developed for complete oxidation of volatile organic compounds (VOCs) and other solvent-derived organic vapors (OVs) in air at relatively low temperatures. The goal for this work is to produce a simple, cost- effective technology for reducing the concentration of organic contaminants in air to acceptable levels before the air is released into the atmosphere or recirculated. Specific applications include ventilated work spaces for spray painting and engine maintenance, indoor air decontamination, dry cleaning, food processing, fume hoods, residential use, and solvent-intensive industrial processes. Catalyst powders and monolith-supported catalysts were screened for conversion of 1-butanol, toluene, and methyl ethyl ketone to carbon dioxide and water. ... However, the catalysts quickly deactivated in the presence of sulfur and phosphorus.







Catalytic Combustion


Book Description

Catalytic combustion has been developed as a method of promoting efficient combustion over a wide range of air-to-fuel ratios with a minimum pollutant formation at low temperatures as compared to conventional flame combustion. In this book, the authors present current research in the study of catalytic combustion including commercial and industrial research in combustion and fluidisation engineering; the catalytic combustion of soot; using metal oxides to improve catalytic efficiency; catalytic combustion in the removal of pollutants from exhaust gases and in the energy conversion field and the catalytic combustion of methane using ceria-zirconia.







Design of Thermal Oxidation Systems for Volatile Organic Compounds


Book Description

Controlling the emission of volatile organic compounds (VOC) became a very prominent environmental issue with the passage of the 1990 Clean Air Act Amendments, and will continue to be an environmental priority through the next decade. No single technology has played as important a role in the control of VOC emissions as thermal oxidation. It has the ability to destroy VOCs in a one-step process that produces innocuous by-products. Design of Thermal Oxidation Systems for Volatile Organic Compounds provides all the information needed for developing a thermal oxidation design in a single reference. It covers design, operation, and maintenance as well as the principles behind the classification of volatile organic compounds as hazardous waste. The author explores the primary purpose of thermal oxidizers and discusses their limitations. The book provides: practical, complete, and concise thermal oxidizer design principles an outline of state-of-the-art design principles a practical rather than theoretical approach real industrial examples in each chapter With the new regulations that affect VOC emissions, engineers from such diverse fields as oil refining, chemical distillation and separation processes, and pharmaceutical industries will need to design and implement thermal oxidation systems. Design of Thermal Oxidation Systems for Volatile Organic Compounds provides a reference to the entire design process, from conceptualization to operation and maintenance.
















Heterogeneous Catalytic Oxidation


Book Description

Table of contents