Model uncertainties reports from CEB task group 1.2 Concrete barriers for environmental protection report from CEB task group 1.3


Book Description

The introduction by the Task Group's convenor L. Taerwe 'Model uncertainties in reliability formats for concrete structures' gives an outline of the general approach summing-up his former contribution to CEB Bulletin 219 'Safety and Performance Concepts' on the consistent treatment of model uncertainties in reliability formats for concrete structures. The second contribution 'An analysis of model uncertainties: ultimata limit state of buckling' by M. Pinglot, F. Duprat and M. Lorrain investigates the model uncertainties of hinged columns and the influence of boundary conditions and proposes appropriate safety elements. The third contribution 'Model uncertainties concerning design equations for the shear capacity of concrete members without shear reinforcement' by G. König and J. Fischer compares suggested formula from various sources (CEB-FIP Model Code, Eurocode 2,Remmel) to 176 test results from a data base covering concrete strengths from 20 to 111 MPa.










Stability of Structures


Book Description

A crucial element of structural and continuum mechanics, stability theory has limitless applications in civil, mechanical, aerospace, naval and nuclear engineering. This text of unparalleled scope presents a comprehensive exposition of the principles and applications of stability analysis. It has been proven as a text for introductory courses and various advanced courses for graduate students. It is also prized as an exhaustive reference for engineers and researchers. The authors' focus on understanding of the basic principles rather than excessive detailed solutions, and their treatment of each subject proceed from simple examples to general concepts and rigorous formulations. All the results are derived using as simple mathematics as possible. Numerous examples are given and 700 exercise problems help in attaining a firm grasp of this central aspect of solid mechanics. The book is an unabridged republication of the 1991 edition by Oxford University Press and the 2003 edition by Dover, updated with 18 pages of end notes.




High strength concrete FIP CEB Bulletin 197


Book Description




Sustainability in Structural Concrete Design


Book Description

Sustainability in construction is a priority for both academia and industry to reduce the carbon footprint of the built environment and thus combat climate change. Numerous approaches have been developed on how to tackle this issue, wherein the implementation of eco-efficient concrete is currently considered one of the most effective measures to be applied at the beginning of a building’s life cycle. This edition of the Structural Engineering Document discusses key issues in selecting and incorporating eco-efficient waste materials capable of enhancing the sustainability of structural concrete in construction projects. The cost-efficiency of using recycled aggregates in structural concrete is shown by several world-renowned researchers. Critical evaluations and case studies further highlight the properties and performance of these materials and in various structural applications. Also, novel low-impact binding systems using industrial by-products showcase the importance of continuous research for technically viable alternatives capable of decreasing the huge dependency on ordinary Portland cement. The purpose of this document is to contribute to a broader understanding of the many possibilities for the development of a more sustainable structural concrete, thereby fostering resilient and sustainable construction practices to support the global commitment to environmental responsibility.